Climate Change Data Portal
DOI | 10.1109/TGRS.2021.3123464 |
Quantifying Uncertainties in Passive Microwave Remote Sensing of Soil Moisture via a Bayesian Probabilistic Inversion Method | |
Ma, Chunfeng; Li, Xin; Wang, Shuguo; Wang, Zengyan; Che, Tao![]() | |
通讯作者 | Li, X (通讯作者),Chinese Acad Sci, Inst Tibetan Plateau Res, Natl Tibetan Plateau Data Ctr, Beijing 100101, Peoples R China. ; Li, X (通讯作者),Chinese Acad Sci, Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China. |
发表日期 | 2022 |
ISSN | 0196-2892 |
EISSN | 1558-0644 |
卷号 | 60 |
英文摘要 | Improving the accuracy of remotely sensed soil moisture (SM) is a challenging and popular topic. Quantifying the uncertainty in the SM inversion process and enhancing the confidence of SM retrieval are promising ways to address this challenge but have received little attention. We present a Bayesian probabilistic inversion algorithm that can simultaneously retrieve SM, surface roughness, and vegetation optical depth and quantify the uncertainty in the inversion. The proposed algorithm is evaluated using airborne polarimetric L-band multibeam radiometer (PLMR) observations. We use three combinations, 3-angular observations at V-polarization (3CV), 3-angular observations at H-polarization (3CH), and 6-channel observations (6CA), to identify the optimal configuration for SM retrieval by taking advantage of PLMR's dual-polarization and multiple angles. Uncertainties are quantified by introducing multiple uncertainty quantification metrics into Bayesian posterior distributions of SM retrievals. The estimates are validated against multiscale ground-based measurements, including manual measurements and wireless sensor network (WSN) measurements, and the spatial representativeness of the ground-based reference regarding the validation of pixel-scale SM retrievals is discussed. The 6CA attempt yields the best SM estimates (correlation coefficient (R) >= 0.864 , root mean square error (RMSE) <= 0.04 m(3)/m(3), and unbiased RMSE (ubRMSE) <= 0.035 m(3)/m(3)), while the 3CH attempt yields the lowest uncertainty. In addition, dense manual measurements are more representative than sparsely distributed WSN measurements. Overall, combining dual-polarized observations yields the best SM estimates but introduces additional uncertainty. This study highlights uncertainties quantification in SM inversion and thus provides confidence in SM inversion, facilitating improved SM retrieval algorithms. |
关键词 | SURFACE EMISSION MODELL-BANDSENSED DATARETRIEVALVALIDATIONSMOSVEGETATIONROUGHNESSALGORITHMFIELD |
英文关键词 | Microwave radiometry; Uncertainty; Microwave theory and techniques; Microwave measurement; L-band; Wireless sensor networks; Sea measurements; Bayesian probabilistic inversion; passive microwave remote sensing; soil moisture (SM); uncertainty quantification |
语种 | 英语 |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000754264200016 |
来源期刊 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/255075 |
作者单位 | [Ma, Chunfeng; Che, Tao; Jin, Rui; Wang, Weizhen] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Remote Sensing Gansu Prov, Lanzhou 730000, Peoples R China; [Ma, Chunfeng; Che, Tao; Jin, Rui; Wang, Weizhen] Chinese Acad Sci, Heihe Remote Sensing Expt Res Stn, Lanzhou 730000, Peoples R China; [Li, Xin] Chinese Acad Sci, Inst Tibetan Plateau Res, Natl Tibetan Plateau Data Ctr, Beijing 100101, Peoples R China; [Li, Xin] Chinese Acad Sci, Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China; [Wang, Shuguo] Jiangsu Normal Univ, Sch Geog Geomat & Planning, Xuzhou 221116, Jiangsu, Peoples R China; [Wang, Zengyan] Henan Univ, Minist Educ, Key Lab Geospatial Technol Middle & Lower Yellow, Kaifeng 475004, Peoples R China; [Wang, Zengyan] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475004, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, Chunfeng,Li, Xin,Wang, Shuguo,et al. Quantifying Uncertainties in Passive Microwave Remote Sensing of Soil Moisture via a Bayesian Probabilistic Inversion Method[J]. 中国科学院西北生态环境资源研究院,2022,60. |
APA | Ma, Chunfeng.,Li, Xin.,Wang, Shuguo.,Wang, Zengyan.,Che, Tao.,...&Wang, Weizhen.(2022).Quantifying Uncertainties in Passive Microwave Remote Sensing of Soil Moisture via a Bayesian Probabilistic Inversion Method.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60. |
MLA | Ma, Chunfeng,et al."Quantifying Uncertainties in Passive Microwave Remote Sensing of Soil Moisture via a Bayesian Probabilistic Inversion Method".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。