Climate Change Data Portal
DOI | 10.1016/j.agrformet.2020.108314 |
Improving the global MODIS GPP model by optimizing parameters with FLUXNET data | |
Huang, Xiaojuan; Xiao, Jingfeng; Wang, Xufeng; Ma, Mingguo | |
通讯作者 | Xiao, JF ; Ma, MG (通讯作者),Univ New Hampshire, Earth Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. |
发表日期 | 2021 |
ISSN | 0168-1923 |
EISSN | 1873-2240 |
卷号 | 300 |
英文摘要 | The global gross primary productivity (GPP) product derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) is perhaps the most widely used GPP product. However, there is still a large uncertainty associated with the MODIS GPP product partly due to the uncertainty in the default Biome specified Parameters Look-Up Table (BPLUT) of the MODIS photosynthesis (PSN) model. Here, we used the Bayesian inference with the Markov chain Monte Carlo (MCMC) approach and FLUXNET data from 110 sites to estimate the parameters of the MODIS PSN model (maximum light use efficiency: epsilon(max); temperature scalar-related parameters: Tmin(min) and Tmin(max); water scalar-related parameters: VPDmin and VPDmax) through individual and joint optimization. The spread of the posterior probability density function (PDF) of the parameters allowed for the calculation of parameter means and uncertainty estimates and also provided information on the behavior of the parameters. Each model parameter varied not only across sites but also across plant functional types (PFTs). The means of the optimized parameter values within each PFT were used to update the BPLUT. We also generated parameter estimates for wetlands and C4/C3 croplands in the BPLUT. Parameters from the joint optimization were more representative and less variable. The optimization improved the performance of the MODIS PSN model by 15% for deciduous broadleaf forests, 8% for savannas, and 3% for grasslands with well-constrained parameters. The performance of the optimized model depended on the effectiveness of parameter optimization. Our study is an effort towards quantifying and reducing parameter uncertainty of the MODIS PSN model and improving the global MODIS GPP product for better understanding global ecosystem carbon dynamics, plant productivity, and carbon-climate feedbacks. |
关键词 | GROSS PRIMARY PRODUCTIONLIGHT-USE-EFFICIENCYNET ECOSYSTEM EXCHANGEPHOTOSYNTHETIC PARAMETERSDATA FUSIONSEASONAL FLUCTUATIONSUNCERTAINTY ANALYSISTERRESTRIAL GROSSCARBON FLUXESPRODUCTIVITY |
英文关键词 | Parameter optimization; Gross primary production; Light use efficiency; Eddy covariance; Uncertainty; Remote sensing |
语种 | 英语 |
WOS研究方向 | Agriculture ; Forestry ; Meteorology & Atmospheric Sciences |
WOS类目 | Agronomy ; Forestry ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000635674500005 |
来源期刊 | AGRICULTURAL AND FOREST METEOROLOGY |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/254653 |
作者单位 | [Huang, Xiaojuan; Ma, Mingguo] Southwest Univ, Sch Geog Sci, Chongqing Jinfo Mt Karst Ecosyst Natl Observat &, Chongqing 400715, Peoples R China; [Huang, Xiaojuan] San Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510245, Guangdong, Peoples R China; [Xiao, Jingfeng] Univ New Hampshire, Earth Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH 03824 USA; [Wang, Xufeng] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China; [Ma, Mingguo] Southwest Univ, Chongqing Engn Res Ctr Remote Sensing Big Data Ap, Sch Geog Sci, Chongqing 400715, Peoples R China |
推荐引用方式 GB/T 7714 | Huang, Xiaojuan,Xiao, Jingfeng,Wang, Xufeng,et al. Improving the global MODIS GPP model by optimizing parameters with FLUXNET data[J]. 中国科学院西北生态环境资源研究院,2021,300. |
APA | Huang, Xiaojuan,Xiao, Jingfeng,Wang, Xufeng,&Ma, Mingguo.(2021).Improving the global MODIS GPP model by optimizing parameters with FLUXNET data.AGRICULTURAL AND FOREST METEOROLOGY,300. |
MLA | Huang, Xiaojuan,et al."Improving the global MODIS GPP model by optimizing parameters with FLUXNET data".AGRICULTURAL AND FOREST METEOROLOGY 300(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。