CCPortal
DOI10.3390/rs13234829
Diversity of Remote Sensing-Based Variable Inputs Improves the Estimation of Seasonal Maximum Freezing Depth
Wang, Bingquan; Ran, Youhua
通讯作者Ran, YH (通讯作者),Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Heihe Remote Sensing Expt Res Stn, Key Lab Remote Sensing Gansu Prov, Lanzhou 730000, Peoples R China. ; Ran, YH (通讯作者),Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China.
发表日期2021
EISSN2072-4292
卷号13期号:23
英文摘要The maximum soil freezing depth (MSFD) is an important indicator of the thermal state of seasonally frozen ground. Its variation has important implications for the water cycle, ecological processes, climate and engineering stability. This study tested three aspects of data-driven predictions of MSFD in the Qinghai-Tibet Plateau (QTP), including comparison of three popular statistical/machine learning techniques, differences between remote sensing variables and reanalysis data as input conditions, and transportability of the model built by reanalysis data. The results show that support vector regression (SVR) performs better than random forest (RF), k-nearest neighbor (KNN) and the ensemble mean of the three models. Compared with the climate predictors, the remote sensing predictors are helpful for improving the simulation accuracy of the MSFD at both decadal and annual scales (at the annual and decadal scales, the root mean square error (RMSE) is reduced by 2.84 and 1.99 cm, respectively). The SVR model with climate predictor calibration using the in situ MSFD at the baseline period (2001-2010) can be used to simulate the MSFD over historical periods (1981-1990 and 1991-2000). This result indicates the good transferability of the well-trained machine learning model and its availability to simulate the MSFD of the past and the future when remote sensing predictors are not available.
关键词LAND-SURFACE TEMPERATURESNOW-COVERAIR-TEMPERATURETIME-SERIESGROUND SURFACECLIMATE-CHANGEHEIHE RIVERPERMAFROSTMODISVALIDATION
英文关键词seasonally frozen ground; soil freezing depth; statistical learning; machine learning; Qinghai-Tibet Plateau
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000734631300001
来源期刊REMOTE SENSING
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/254516
作者单位[Wang, Bingquan; Ran, Youhua] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Heihe Remote Sensing Expt Res Stn, Key Lab Remote Sensing Gansu Prov, Lanzhou 730000, Peoples R China; [Wang, Bingquan; Ran, Youhua] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wang, Bingquan,Ran, Youhua. Diversity of Remote Sensing-Based Variable Inputs Improves the Estimation of Seasonal Maximum Freezing Depth[J]. 中国科学院西北生态环境资源研究院,2021,13(23).
APA Wang, Bingquan,&Ran, Youhua.(2021).Diversity of Remote Sensing-Based Variable Inputs Improves the Estimation of Seasonal Maximum Freezing Depth.REMOTE SENSING,13(23).
MLA Wang, Bingquan,et al."Diversity of Remote Sensing-Based Variable Inputs Improves the Estimation of Seasonal Maximum Freezing Depth".REMOTE SENSING 13.23(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Bingquan]的文章
[Ran, Youhua]的文章
百度学术
百度学术中相似的文章
[Wang, Bingquan]的文章
[Ran, Youhua]的文章
必应学术
必应学术中相似的文章
[Wang, Bingquan]的文章
[Ran, Youhua]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。