CCPortal
DOI10.1016/j.gecco.2022.e01999
A non-destructive method for rapid acquisition of grassland aboveground biomass for satellite ground verification using UAV RGB images
Zhang, Huifang; Tang, Zhonggang; Wang, Binyao; Meng, Baoping; Qin, Yu; Sun, Yi; Lv, Yanyan; Zhang, Jianguo; Yi, Shuhua
通讯作者Yi, SH (通讯作者),Nantong Univ, Inst Fragile Ecoenvironm, 999 Tongjing Rd, Nantong 226007, Jiangsu, Peoples R China.
发表日期2022
EISSN2351-9894
卷号33
英文摘要Remote sensing has become an indispensable method for estimating the regional-scale collection of grassland aboveground biomass (AGB). However, the lack of ground verification samples often reduces the inversion accuracy. This paper aimed to find a non-destructive method to quickly obtain grassland AGB at quadrat-scale through unmanned aerial vehicles (UAVs) in a large area. Thus, we proposed and assessed the vertical and horizontal indices from UAV RGB images as predictors of grassland AGB using the random forest (RF) machine learning technique. By comparing the performance of different indices combinations, we found that the model combing the horizontal and vertical indices (RFVH) performed best (R-2 = 0.78; RMSE = 24.80 g/m(2)), followed by the model using only horizontal indices (the RFH model; R-2=0.73; RMSE =26.54 g/ m(2)), and the last was the model using only the vertical index. However, the REVH model was unsuitable for collecting AGB samples in a large area because the UAVs with RGB cameras failed to obtain vegetation height information in areas with high vegetation coverage. In conclusion, the RFH model can be used to replace the traditional destructive method for collecting ground data over large regions for AGB satellite inversion.
关键词CROP SURFACE MODELSCLIMATE-CHANGEVEGETATIONCARBONCOVERAREAPRODUCTIVITYINDEXESWETLANDHEIGHT
英文关键词Grassland; Unmanned aerial vehicle; Aboveground biomass; Random forest; Vegetation; RGB image
语种英语
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
WOS类目Biodiversity Conservation ; Ecology
WOS记录号WOS:000742854600003
来源期刊GLOBAL ECOLOGY AND CONSERVATION
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/254352
作者单位[Zhang, Huifang; Meng, Baoping; Sun, Yi; Lv, Yanyan; Zhang, Jianguo; Yi, Shuhua] Nantong Univ, Inst Fragile Ecoenvironm, 999 Tongjing Rd, Nantong 226007, Jiangsu, Peoples R China; [Zhang, Huifang; Tang, Zhonggang; Wang, Binyao; Meng, Baoping; Sun, Yi; Lv, Yanyan; Zhang, Jianguo; Yi, Shuhua] Nantong Univ, Sch Geog Sci, 999 Tongjing Rd, Nantong 226007, Jiangsu, Peoples R China; [Qin, Yu] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, 320 Donggang West Rd, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Huifang,Tang, Zhonggang,Wang, Binyao,et al. A non-destructive method for rapid acquisition of grassland aboveground biomass for satellite ground verification using UAV RGB images[J]. 中国科学院西北生态环境资源研究院,2022,33.
APA Zhang, Huifang.,Tang, Zhonggang.,Wang, Binyao.,Meng, Baoping.,Qin, Yu.,...&Yi, Shuhua.(2022).A non-destructive method for rapid acquisition of grassland aboveground biomass for satellite ground verification using UAV RGB images.GLOBAL ECOLOGY AND CONSERVATION,33.
MLA Zhang, Huifang,et al."A non-destructive method for rapid acquisition of grassland aboveground biomass for satellite ground verification using UAV RGB images".GLOBAL ECOLOGY AND CONSERVATION 33(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Huifang]的文章
[Tang, Zhonggang]的文章
[Wang, Binyao]的文章
百度学术
百度学术中相似的文章
[Zhang, Huifang]的文章
[Tang, Zhonggang]的文章
[Wang, Binyao]的文章
必应学术
必应学术中相似的文章
[Zhang, Huifang]的文章
[Tang, Zhonggang]的文章
[Wang, Binyao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。