Climate Change Data Portal
DOI | 10.1016/j.jag.2021.102399 |
Automatically quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from multi-temporal CubeSat images | |
Huang, Lingcao; Liu, Lin; Luo, Jing; Lin, Zhanju; Niu, Fujun | |
通讯作者 | Huang, LC (通讯作者),Chinese Univ Hong Kong, Fac Sci, Earth Syst Sci Programme, Hong Kong, Peoples R China. ; Huang, LC (通讯作者),Univ Colorado, Earth Sci & Observat Ctr, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. |
发表日期 | 2021 |
ISSN | 1569-8432 |
EISSN | 1872-826X |
卷号 | 102 |
英文摘要 | Retrogressive thaw slumps (RTSs) are among the most dynamic landforms resulting from the thawing of ice-rich permafrost. However, RTS distribution and evolution are poorly quantified because most of them occur in remote and inaccessible areas. In this study, we propose a method that integrates deep learning, change detection, and medial axis transform, aiming to automatically quantify the RTS development on multi-temporal images in the Beiluhe region on the Tibetan Plateau from 2017 to 2019. The images are taken by the Planet CubeSat constellation with high spatial and temporal resolution. The experiments show that automatic delineation based on deep learning can produce similar results to manual delineation, providing the potential of using these results to quantify the changes of RTS boundaries in different years. Our method reveals that among manuallydelineated 342 RTSs in the Beiluhe region, 83% and 76% of them expanded from 2017 to 2018 and 2018 to 2019, respectively. For the expansion from 2017 to 2018, the average and maximum expanding areas are 0.20 ha and 1.47 ha, while the average and maximum retreat distances are 21.3 m and 91 m, respectively. For 2018 to 2019 the average and maximum expansion areas and retreat distances are 0.22 ha, 2.53 ha, 25.0 m, and 212 m, respectively. The results show that the method can quantify RTS development automatically on multi-temporal images but may miss some small and subtle RTSs. Moreover, this study provides the very first quantitative report on RTS development on the Tibetan Plateau, which helps to advance the understanding of permafrost degradation. |
关键词 | CLIMATE-CHANGEACTIVE-LAYERPERMAFROSTTHERMOKARSTECOSYSTEMSBASIN |
英文关键词 | Change Detection; Deep Learning; Medial Axis Transform; Permafrost; Retrogressive Thaw Slumps |
语种 | 英语 |
WOS研究方向 | Remote Sensing |
WOS类目 | Remote Sensing |
WOS记录号 | WOS:000700850000003 |
来源期刊 | INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
![]() |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/254328 |
作者单位 | [Huang, Lingcao; Liu, Lin] Chinese Univ Hong Kong, Fac Sci, Earth Syst Sci Programme, Hong Kong, Peoples R China; [Luo, Jing; Lin, Zhanju; Niu, Fujun] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China; [Luo, Jing; Lin, Zhanju; Niu, Fujun] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou, Peoples R China; [Huang, Lingcao] Univ Colorado, Earth Sci & Observat Ctr, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA |
推荐引用方式 GB/T 7714 | Huang, Lingcao,Liu, Lin,Luo, Jing,et al. Automatically quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from multi-temporal CubeSat images[J]. 中国科学院西北生态环境资源研究院,2021,102. |
APA | Huang, Lingcao,Liu, Lin,Luo, Jing,Lin, Zhanju,&Niu, Fujun.(2021).Automatically quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from multi-temporal CubeSat images.INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,102. |
MLA | Huang, Lingcao,et al."Automatically quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from multi-temporal CubeSat images".INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 102(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。