CCPortal
DOI10.3390/rs13071392
Mapping Surficial Soil Particle Size Fractions in Alpine Permafrost Regions of the Qinghai-Tibet Plateau
Wang, Chong; Zhao, Lin; Fang, Hongbing; Wang, Lingxiao; Xing, Zanpin; Zou, Defu; Hu, Guojie; Wu, Xiaodong; Zhao, Yonghua; Sheng, Yu; Pang, Qiangqiang; Du, Erji; Liu, Guangyue; Yun, Hanbo
通讯作者Zhao, L (通讯作者),Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China. ; Zhao, L (通讯作者),Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Cryosphere Res Stn Qinghai Xizang Plateau, Lanzhou 730000, Peoples R China.
发表日期2021
EISSN2072-4292
卷号13期号:7
英文摘要Spatial information of particle size fractions (PSFs) is primary for understanding the thermal state of permafrost in the Qinghai-Tibet Plateau (QTP) in response to climate change. However, the limitation of field observations and the tremendous spatial heterogeneity hamper the digital mapping of PSF. This study integrated log-ratio transformation approaches, variable searching methods, and machine learning techniques to map the surficial soil PSF distribution of two typical permafrost regions. Results showed that the Boruta technique identified different covariates but retained those covariates of vegetation and land surface temperature in both regions. Variable selection techniques effectively decreased the data redundancy and improved model performance. In addition, the spatial distribution of soil PSFs generated by four log-ratio models presented similar patterns. Isometric log-ratio random forest (ILR-RF) outperformed the other models in both regions (i.e., R-2 ranged between 0.36 to 0.56, RMSE ranged between 0.02 and 0.10). Compared with three legacy datasets, our prediction better captured the spatial pattern of PSFs with higher accuracy. Although this study largely improved the accuracy of spatial distribution of soil PSFs, further endeavors should also be made to improve model accuracy and interpretability for a better understanding of the interaction and processes between environmental predictors and soil PSFs at permafrost regions.
关键词FEATURE-SELECTIONSPATIAL PREDICTIONMACHINEDEGRADATIONCHALLENGESMOISTUREDEPTH
英文关键词soil texture; log-ratio transformation; machine learning; variable selection
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000638789600001
来源期刊REMOTE SENSING
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/254251
作者单位[Wang, Chong] Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Minist Educ KLME,Joint Int Res Lab Climate & Envi, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Peoples R China; [Wang, Chong; Zhao, Lin; Wang, Lingxiao] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China; [Zhao, Lin; Wang, Lingxiao; Xing, Zanpin; Zou, Defu; Hu, Guojie; Wu, Xiaodong; Zhao, Yonghua; Sheng, Yu; Pang, Qiangqiang; Du, Erji; Liu, Guangyue] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Cryosphere Res Stn Qinghai Xizang Plateau, Lanzhou 730000, Peoples R China; [Fang, Hongbing] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730000, Peoples R China; [Yun, Hanbo] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Wang, Chong,Zhao, Lin,Fang, Hongbing,et al. Mapping Surficial Soil Particle Size Fractions in Alpine Permafrost Regions of the Qinghai-Tibet Plateau[J]. 中国科学院西北生态环境资源研究院,2021,13(7).
APA Wang, Chong.,Zhao, Lin.,Fang, Hongbing.,Wang, Lingxiao.,Xing, Zanpin.,...&Yun, Hanbo.(2021).Mapping Surficial Soil Particle Size Fractions in Alpine Permafrost Regions of the Qinghai-Tibet Plateau.REMOTE SENSING,13(7).
MLA Wang, Chong,et al."Mapping Surficial Soil Particle Size Fractions in Alpine Permafrost Regions of the Qinghai-Tibet Plateau".REMOTE SENSING 13.7(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Chong]的文章
[Zhao, Lin]的文章
[Fang, Hongbing]的文章
百度学术
百度学术中相似的文章
[Wang, Chong]的文章
[Zhao, Lin]的文章
[Fang, Hongbing]的文章
必应学术
必应学术中相似的文章
[Wang, Chong]的文章
[Zhao, Lin]的文章
[Fang, Hongbing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。