Climate Change Data Portal
DOI | 10.3390/w13202875 |
Evaluation of the RF-Based Downscaled SMAP and SMOS Products Using Multi-Source Data over an Alpine Mountains Basin, Northwest China | |
Wen, Yuanyuan; Zhao, Jun; Zhu, Guofeng; Xu, Ri; Yang, Jianxia | |
通讯作者 | Zhao, J (通讯作者),Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou 730070, Peoples R China. |
发表日期 | 2021 |
EISSN | 2073-4441 |
卷号 | 13期号:20 |
英文摘要 | Passive microwave surface soil moisture (SSM) products tend to have very low resolution, which massively limits their application and validation in regional or local-scale areas. Many climate and hydrological studies are urgently needed to evaluate the suitability of satellite SSM products, especially in alpine mountain areas where soil moisture plays a key role in terrestrial atmospheric exchanges. Aiming to overcome this limitation, a downscaling method based on random forest (RF) was proposed to disaggregate satellite SSM products. We compared the ability of the downscaled soil moisture active passive (SMAP) SSM and soil moisture and ocean salinity satellite (SMOS) SSM products to capture soil moisture information in upstream of the Heihe River Basin by using in situ measurements, the triple collocation (TC) method and temperature vegetation dryness index (TVDI). The results showed that the RF downscaling method has strong applicability in the study area, and the downscaled results of the two products after residual correction have more details, which can better represent the spatial distribution of soil moisture. The validation with the in situ SSM measurements indicates that the correlation between downscaled SMAP and in situ SSM is better than downscaled SMOS at both point and watershed scales in the Babaohe River Basin. From the TC method, the root mean square error (RMSE) of the CLDAS (CMA land data assimilation system), downscaled SMAP and downscaled SMOS were 0.0265, 0.0255 and 0.0317, respectively, indicating that the downscaled SMAP has smaller errors in the study area than others. However, the soil moisture distribution in the study area shown by the SMOS downscaled results is closer than the downscaled SMAP to the degree of drought reflected by TVDI. Overall, this study suggests that the proposed RF-based downscaling method can capture the variation of SSM well, and the downscaled SMAP products perform significantly better than the downscaled SMOS products after the accuracy verification and error analysis of the downscaled results, and it should be helpful to facilitate applications for satellite SSM products at small scales. |
关键词 | SOIL-MOISTURE PRODUCTHIGH-RESOLUTIONDISAGGREGATIONPRECIPITATIONASSIMILATIONTEMPERATUREMISSIONERRORSWATER |
英文关键词 | downscaling; random forest; SMAP; SMOS; surface soil moisture; triple collocation; validation |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
WOS类目 | Environmental Sciences ; Water Resources |
WOS记录号 | WOS:000714456800001 |
来源期刊 | WATER |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/254023 |
作者单位 | [Wen, Yuanyuan; Zhao, Jun; Zhu, Guofeng; Xu, Ri; Yang, Jianxia] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou 730070, Peoples R China; [Zhu, Guofeng] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryosphere Sci, Lanzhou 730070, Peoples R China |
推荐引用方式 GB/T 7714 | Wen, Yuanyuan,Zhao, Jun,Zhu, Guofeng,et al. Evaluation of the RF-Based Downscaled SMAP and SMOS Products Using Multi-Source Data over an Alpine Mountains Basin, Northwest China[J]. 中国科学院西北生态环境资源研究院,2021,13(20). |
APA | Wen, Yuanyuan,Zhao, Jun,Zhu, Guofeng,Xu, Ri,&Yang, Jianxia.(2021).Evaluation of the RF-Based Downscaled SMAP and SMOS Products Using Multi-Source Data over an Alpine Mountains Basin, Northwest China.WATER,13(20). |
MLA | Wen, Yuanyuan,et al."Evaluation of the RF-Based Downscaled SMAP and SMOS Products Using Multi-Source Data over an Alpine Mountains Basin, Northwest China".WATER 13.20(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。