CCPortal
DOI10.1007/s00530-022-00906-w
Local feature fusion and SRC-based decision fusion for ear recognition
Wang, Zhaobin; Gao, Xiong; Yang, Jing; Yan, Qizhen; Zhang, Yaonan
通讯作者Wang, ZB (通讯作者),Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China. ; Wang, ZB (通讯作者),Chinese Acad Sci, Natl Cryosphere Desert Data Ctr, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China.
发表日期2020
ISSN0942-4962
EISSN1432-1882
英文摘要As an emerging biometric technology, human ear recognition has important applications in crime tracking, forensic identification and other fields. In the paper, we propose an effective fusion-based human ear recognition method and describe the algorithm based on three parts: preprocessing, feature extraction and classification decision. First, we employ a weighted distributed adaptive gamma correction (AGCWD)-based image enhancement method for the preprocessing operation. Features are extracted by fusing dense scale invariant feature transform (DSIFT), local binary patterns (LBP) and histogram of gradient directions (HoG), after which we apply two sparse representation-based feature selection methods, namely robust sparse linear discriminant analysis (RSLDA) and inter-class sparsity-based discriminant least square regression (ICS-DLSR), to improve the computational speed. Finally, the two selection features are classified separately using the FDDL-based SRC scheme (FDDL-based SRC), and the two sets of classification results are fused at the decision level to obtain the final decision results. Our algorithm is tested on six commonly used datasets (USTB1, USTB2, USTB3, IITD1, AMI and AWE) and obtained the accuracy of 99.44%, 97.08%, 100%, 100%, 98.14% and 82.90%. The experiments show the superiority of our algorithm compared with other algorithms.
关键词FEATURE-EXTRACTION METHODSPARSE REPRESENTATIONBIOMETRIC SYSTEMNEURAL-NETWORKSIDENTIFICATIONINVARIANTSHAPE
英文关键词AGCWD-based preprocessing; Feature extraction; Feature selection; FDDL-based SRC
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000763189800001
来源期刊MULTIMEDIA SYSTEMS
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/254003
作者单位[Wang, Zhaobin; Gao, Xiong; Yang, Jing; Yan, Qizhen] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China; [Wang, Zhaobin; Zhang, Yaonan] Chinese Acad Sci, Natl Cryosphere Desert Data Ctr, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhaobin,Gao, Xiong,Yang, Jing,et al. Local feature fusion and SRC-based decision fusion for ear recognition[J]. 中国科学院西北生态环境资源研究院,2020.
APA Wang, Zhaobin,Gao, Xiong,Yang, Jing,Yan, Qizhen,&Zhang, Yaonan.(2020).Local feature fusion and SRC-based decision fusion for ear recognition.MULTIMEDIA SYSTEMS.
MLA Wang, Zhaobin,et al."Local feature fusion and SRC-based decision fusion for ear recognition".MULTIMEDIA SYSTEMS (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Zhaobin]的文章
[Gao, Xiong]的文章
[Yang, Jing]的文章
百度学术
百度学术中相似的文章
[Wang, Zhaobin]的文章
[Gao, Xiong]的文章
[Yang, Jing]的文章
必应学术
必应学术中相似的文章
[Wang, Zhaobin]的文章
[Gao, Xiong]的文章
[Yang, Jing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。