CCPortal
DOI10.1029/2020WR029010
Improving Snow Estimates Through Assimilation of MODIS Fractional Snow Cover Data Using Machine Learning Algorithms and the Common Land Model
Hou, Jinliang; Huang, Chunlin; Chen, Weijing; Zhang, Ying
通讯作者Huang, CL (通讯作者),Chinese Acad Sci, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China.
发表日期2021
ISSN0043-1397
EISSN1944-7973
卷号57期号:7
英文摘要In this study, an innovative MODIS fractional snow cover (SCF) data assimilation (DA) prototype framework that invokes machine learning (ML) techniques and Common land model (CoLM) is proposed to improve the estimation of the snow depth (SD) and the SCF. To validate our new framework, we analyzed two snow seasons from 2013 to 2015 at 46 stations in Northern Xinjiang in China. We developed 12 SCF DA schemes that represent different DA methods (direct insertion (DI) and Ensemble Kalman Filter (EnKF)), observational data (original data and gap-filled MODIS SCF data), and observation operators (five new snow depletion curves (SDCs) defined using traditional multivariate nonlinear regression and four ML methods). While improving the frequency of the SCF observations in the DI-based DA scheme only resulted in a marginal improvement in the snow estimates, by adding new SDCs fitted by ML techniques (e.g., deep belief network), and the gap-filled MODIS SCF data to the EnKF-based DA scheme, we were able to reduce model structural uncertainties of CoLM and achieve marked improvement in the accuracy of the snow estimates (RMSE = 5.92 cm, mean bias error = -1.94 cm, and average degree of improvement = 32.18% for SD estimates and RMSE = 15. 79%, mean bias error = -1.21%, and average degree of improvement = 47.95% for SCF estimates). Our results demonstrate the feasibility of improving snow estimates by combining the ML techniques with physically based snowpack model in a SCF DA framework.
关键词WATER EQUIVALENTSURFACE MODELBRIGHTNESS TEMPERATURENORTH-AMERICAAREARETRIEVALDEPTHSIMULATIONSVALIDATIONSYSTEM
英文关键词data assimilation; snow depth; fractional snow cover; machine learning; Common Land Model
语种英语
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS记录号WOS:000680092200028
来源期刊WATER RESOURCES RESEARCH
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/253959
作者单位[Hou, Jinliang; Huang, Chunlin; Zhang, Ying] Chinese Acad Sci, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China; [Chen, Weijing] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA
推荐引用方式
GB/T 7714
Hou, Jinliang,Huang, Chunlin,Chen, Weijing,et al. Improving Snow Estimates Through Assimilation of MODIS Fractional Snow Cover Data Using Machine Learning Algorithms and the Common Land Model[J]. 中国科学院西北生态环境资源研究院,2021,57(7).
APA Hou, Jinliang,Huang, Chunlin,Chen, Weijing,&Zhang, Ying.(2021).Improving Snow Estimates Through Assimilation of MODIS Fractional Snow Cover Data Using Machine Learning Algorithms and the Common Land Model.WATER RESOURCES RESEARCH,57(7).
MLA Hou, Jinliang,et al."Improving Snow Estimates Through Assimilation of MODIS Fractional Snow Cover Data Using Machine Learning Algorithms and the Common Land Model".WATER RESOURCES RESEARCH 57.7(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Jinliang]的文章
[Huang, Chunlin]的文章
[Chen, Weijing]的文章
百度学术
百度学术中相似的文章
[Hou, Jinliang]的文章
[Huang, Chunlin]的文章
[Chen, Weijing]的文章
必应学术
必应学术中相似的文章
[Hou, Jinliang]的文章
[Huang, Chunlin]的文章
[Chen, Weijing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。