CCPortal
DOI10.1016/j.jhydrol.2021.126881
A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland
Fu, Tonglin; Li, Xinrong; Jia, Rongliang; Feng, Li
通讯作者Li, XR (通讯作者),Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Shapotou Desert Res & Expt Stn, Lanzhou, Peoples R China.
发表日期2021
ISSN0022-1694
EISSN1879-2707
卷号603
英文摘要Evapotranspiration (ET) plays a vital role in the water cycle and energy cycle and serves as an important linkage between ecological and hydrological processes. Accurate estimation of ET based on data-driven methods is of great theoretical and practical significance for exploring soil evaporation, plant transpiration and the regional hydrological balance. Most existing estimation approaches were proposed based on multiple meteorological variables. This study proposed a novel hybrid estimation approach to estimate the monthly ET using only historical ET time series in the southeastern margins of the Tengger Desert, China. The approach consisted of three sections including data preprocessing, parameter optimization and estimation. The model evaluation demonstrated that the hybrid model based on the variational mode decomposition (VMD) method, grey wolf optimizer (GWO) algorithm and support vector machine (SVM) model achieved superior computational performance compared to the performance of other methods. The Nash-Sutcliffe coefficient of efficiency (NSCE) increased from 0.8588 to 0.8754 and the mean absolute percentage error (MAPE) decreased from 28.42% to 23.22% in the testing stage. Thus, we suggest that the hybrid VMD-GWO-SVM model will be the best choice for estimating ET in the absence of regional meteorological monitoring.
关键词ARTIFICIAL NEURAL-NETWORKSUPPORT-VECTOR-MACHINEDECOMPOSITIONEVAPORATIONALGORITHMREGRESSIONEQUATIONSMARSSVMELM
英文关键词Evapotranspiration; Variational mode decomposition; Grey wolf optimizer algorithm; Support vector machine; Tengger Desert
语种英语
WOS研究方向Engineering ; Geology ; Water Resources
WOS类目Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号WOS:000706313000065
来源期刊JOURNAL OF HYDROLOGY
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/253879
作者单位[Fu, Tonglin; Li, Xinrong; Jia, Rongliang; Feng, Li] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Shapotou Desert Res & Expt Stn, Lanzhou, Peoples R China; [Fu, Tonglin] Univ Chinese Acad Sci, Beijing, Peoples R China; [Fu, Tonglin] Longdong Univ, Sch Math & Stat, Qingyang, Peoples R China
推荐引用方式
GB/T 7714
Fu, Tonglin,Li, Xinrong,Jia, Rongliang,et al. A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland[J]. 中国科学院西北生态环境资源研究院,2021,603.
APA Fu, Tonglin,Li, Xinrong,Jia, Rongliang,&Feng, Li.(2021).A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland.JOURNAL OF HYDROLOGY,603.
MLA Fu, Tonglin,et al."A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland".JOURNAL OF HYDROLOGY 603(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fu, Tonglin]的文章
[Li, Xinrong]的文章
[Jia, Rongliang]的文章
百度学术
百度学术中相似的文章
[Fu, Tonglin]的文章
[Li, Xinrong]的文章
[Jia, Rongliang]的文章
必应学术
必应学术中相似的文章
[Fu, Tonglin]的文章
[Li, Xinrong]的文章
[Jia, Rongliang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。