CCPortal
DOI10.1016/j.ijthermalsci.2022.107487
A new model for predicting soil thermal conductivity for dry soils
Du, Yizhen; Li, Ren; Wu, Tonghua; Yang, Chengsong; Zhao, Lin; Hu, Guojie; Xiao, Yao; Yang, Shuhua; Ni, Jie; Ma, Junjie; Shi, Jianzong; Qiao, Yongping
通讯作者Li, R (通讯作者),Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, 320 Donggang West Rd, Lanzhou 730000, Peoples R China.
发表日期2022
ISSN1290-0729
EISSN1778-4166
卷号176
英文摘要Soil thermal conductivity (lambda), describing the ability of transferring heat in the soil, plays an important role in soil thermal behavior. The estimation of lambda at dryness (lambda(dry)) is essential for obtaining accurate lambda. This study aims to develop a new model for lambda(dry) across a wide range of the soil dry density (rho(d)) for soils with different textures. The lambda(dry) measurements of 75 soil samples from literature and 19 new soils from Qinghai-Tibet Plateau are used to establish the segmented relationships between lambda(dry) and rho(d) based on clustering algorithms. Our analyses reveal that when rho(d) < 1.4 g cm(-3), rho(d) significantly influences lambda(dry), while for rho(d & nbsp;)>= 1.4 g cm(-3), other soil properties must be taken into account. So, the performances of 12 widely used models are evaluated in these two different rho(d)& nbsp;ranges. Results show that when rho(d)& nbsp;< 1.4 g cm(-3), the previous developed models generally perform well. On the contrary, all these models produce large calculation errors when rho(d)& nbsp;>=& nbsp;1.4 g cm(-3). This further confirms the necessity of segmentation. Finally, with a demarcation point of 1.4 g cm(-3), a new model with different calculation methods is proposed herein for predicting dry. The new model exhibits the highest accuracy in predicting & nbsp;lambda(dry) with the highest correlation coefficient (R), lowest root mean square error (RMSE), and smaller mean bias error values; compared to the previous models, the new model RMSE values are reduced by 16.6% on average for soils with rho(d)& nbsp;< 1.4 g cm(-3)& nbsp;and 21.0% for rho(d)& nbsp;>=& nbsp;1.4 g cm(-3), respectively. Namely, the new model is highly suitable for studying lambda(dry)& nbsp;for different rho(d)& nbsp;due to its simplicity and applicability.
关键词PERMAFROST REGIONSWATER-CONTENTTEMPERATURESANDYFIELDPARAMETERIZATIONSUNFROZENLAYERPROBEROCK
英文关键词Soil thermal conductivity; Dry soil; Model; Soil dry density
语种英语
WOS研究方向Thermodynamics ; Engineering
WOS类目Thermodynamics ; Engineering, Mechanical
WOS记录号WOS:000778314500002
来源期刊INTERNATIONAL JOURNAL OF THERMAL SCIENCES
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/253694
作者单位[Du, Yizhen; Li, Ren; Wu, Tonghua; Hu, Guojie; Xiao, Yao; Yang, Shuhua; Ma, Junjie; Shi, Jianzong; Qiao, Yongping] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryospher Sci, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730000, Peoples R China; [Du, Yizhen; Ni, Jie] ZaoZhuang Univ, Coll Tourism Resources & Environm, Zaozhuang 277160, Peoples R China; [Wu, Tonghua] Southern Marine Sci & Engn Guangdong Lab, Guangzhou 511458, Peoples R China; [Yang, Chengsong] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China; [Zhao, Lin] Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
推荐引用方式
GB/T 7714
Du, Yizhen,Li, Ren,Wu, Tonghua,et al. A new model for predicting soil thermal conductivity for dry soils[J]. 中国科学院西北生态环境资源研究院,2022,176.
APA Du, Yizhen.,Li, Ren.,Wu, Tonghua.,Yang, Chengsong.,Zhao, Lin.,...&Qiao, Yongping.(2022).A new model for predicting soil thermal conductivity for dry soils.INTERNATIONAL JOURNAL OF THERMAL SCIENCES,176.
MLA Du, Yizhen,et al."A new model for predicting soil thermal conductivity for dry soils".INTERNATIONAL JOURNAL OF THERMAL SCIENCES 176(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Yizhen]的文章
[Li, Ren]的文章
[Wu, Tonghua]的文章
百度学术
百度学术中相似的文章
[Du, Yizhen]的文章
[Li, Ren]的文章
[Wu, Tonghua]的文章
必应学术
必应学术中相似的文章
[Du, Yizhen]的文章
[Li, Ren]的文章
[Wu, Tonghua]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。