CCPortal
DOI10.1038/s41467-020-20779-9
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
George T.M.; Manucharyan G.E.; Thompson A.F.
发表日期2021
ISSN2041-1723
卷号12期号:1
英文摘要Mesoscale eddies have strong signatures in sea surface height (SSH) anomalies that are measured globally through satellite altimetry. However, monitoring the transport of heat associated with these eddies and its impact on the global ocean circulation remains difficult as it requires simultaneous observations of upper-ocean velocity fields and interior temperature and density properties. Here we demonstrate that for quasigeostrophic baroclinic turbulence the eddy patterns in SSH snapshots alone contain sufficient information to estimate the eddy heat fluxes. We use simulations of baroclinic turbulence for the supervised learning of a deep Convolutional Neural Network (CNN) to predict up to 64% of eddy heat flux variance. CNNs also significantly outperform other conventional data-driven techniques. Our results suggest that deep CNNs could provide an effective pathway towards an operational monitoring of eddy heat fluxes using satellite altimetry and other remote sensing products. © 2021, The Author(s).
语种英语
scopus关键词artificial neural network; global ocean; heat flux; machine learning; mesoscale eddy; oceanic circulation; remote sensing; satellite altimetry; sea surface height; supervised learning; turbulence; article; convolutional neural network; deep learning; heat; remote sensing; simulation
来源期刊Nature Communications
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/251528
作者单位Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States; The Cavendish Laboratory of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB1 3FZ, United Kingdom; School of Oceanography, University of Washington, Seattle, WA 98195, United States
推荐引用方式
GB/T 7714
George T.M.,Manucharyan G.E.,Thompson A.F.. Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence[J],2021,12(1).
APA George T.M.,Manucharyan G.E.,&Thompson A.F..(2021).Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence.Nature Communications,12(1).
MLA George T.M.,et al."Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence".Nature Communications 12.1(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[George T.M.]的文章
[Manucharyan G.E.]的文章
[Thompson A.F.]的文章
百度学术
百度学术中相似的文章
[George T.M.]的文章
[Manucharyan G.E.]的文章
[Thompson A.F.]的文章
必应学术
必应学术中相似的文章
[George T.M.]的文章
[Manucharyan G.E.]的文章
[Thompson A.F.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。