CCPortal
DOI10.1038/s41467-021-23406-3
Deep learning for bias correction of MJO prediction
Kim H.; Ham Y.G.; Joo Y.S.; Son S.W.
发表日期2021
ISSN2041-1723
卷号12期号:1
英文摘要Producing accurate weather prediction beyond two weeks is an urgent challenge due to its ever-increasing socioeconomic value. The Madden-Julian Oscillation (MJO), a planetary-scale tropical convective system, serves as a primary source of global subseasonal (i.e., targeting three to four weeks) predictability. During the past decades, operational forecasting systems have improved substantially, while the MJO prediction skill has not yet reached its potential predictability, partly due to the systematic errors caused by imperfect numerical models. Here, to improve the MJO prediction skill, we blend the state-of-the-art dynamical forecasts and observations with a Deep Learning bias correction method. With Deep Learning bias correction, multi-model forecast errors in MJO amplitude and phase averaged over four weeks are significantly reduced by about 90% and 77%, respectively. Most models show the greatest improvement for MJO events starting from the Indian Ocean and crossing the Maritime Continent. © 2021, The Author(s).
语种英语
scopus关键词air-ice interaction; atmospheric convection; correction; error analysis; machine learning; Madden-Julian oscillation; prediction; sampling bias; socioeconomic conditions; weather forecasting; article; deep learning; Indian Ocean; oscillation; prediction; skill; Indian Ocean
来源期刊Nature Communications
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/251434
作者单位School of Marine and Atmospheric Sciences, Stony Brook University, New York, NY, United States; Department of Oceanography, Chonnam National University, Gwangju, South Korea; School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
推荐引用方式
GB/T 7714
Kim H.,Ham Y.G.,Joo Y.S.,et al. Deep learning for bias correction of MJO prediction[J],2021,12(1).
APA Kim H.,Ham Y.G.,Joo Y.S.,&Son S.W..(2021).Deep learning for bias correction of MJO prediction.Nature Communications,12(1).
MLA Kim H.,et al."Deep learning for bias correction of MJO prediction".Nature Communications 12.1(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kim H.]的文章
[Ham Y.G.]的文章
[Joo Y.S.]的文章
百度学术
百度学术中相似的文章
[Kim H.]的文章
[Ham Y.G.]的文章
[Joo Y.S.]的文章
必应学术
必应学术中相似的文章
[Kim H.]的文章
[Ham Y.G.]的文章
[Joo Y.S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。