Climate Change Data Portal
DOI | 10.1038/s41467-021-26335-3 |
Divergent abiotic spectral pathways unravel pathogen stress signals across species | |
Zarco-Tejada P.J.; Poblete T.; Camino C.; Gonzalez-Dugo V.; Calderon R.; Hornero A.; Hernandez-Clemente R.; Román-Écija M.; Velasco-Amo M.P.; Landa B.B.; Beck P.S.A.; Saponari M.; Boscia D.; Navas-Cortes J.A. | |
发表日期 | 2021 |
ISSN | 2041-1723 |
卷号 | 12期号:1 |
英文摘要 | Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic–abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide. © 2021, The Author(s). |
语种 | 英语 |
scopus关键词 | crop; pathogen; spectroscopy; stress; water stress; yield; abiotic stress; article; crop; human; infectious agent; nonhuman; spectroscopy; thermography; uncertainty; Verticillium dahliae; water stress; Xylella fastidiosa; almond; Ascomycetes; chemistry; dehydration; host range; microbiology; olive tree; physiological stress; physiology; plant disease; Xylella; Verticillium dahliae; Xylella fastidiosa; Ascomycota; Dehydration; Host Specificity; Olea; Plant Diseases; Prunus dulcis; Spectrum Analysis; Stress, Physiological; Xylella |
来源期刊 | Nature Communications |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/251332 |
作者单位 | School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal s/n, Córdoba, 14004, Spain; European Commission, Joint Research Centre (JRC), Ispra, Italy; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, United States; Department of Geography, Swansea University, Swansea, SA2 8PP, United Kingdom; CNR, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy |
推荐引用方式 GB/T 7714 | Zarco-Tejada P.J.,Poblete T.,Camino C.,et al. Divergent abiotic spectral pathways unravel pathogen stress signals across species[J],2021,12(1). |
APA | Zarco-Tejada P.J..,Poblete T..,Camino C..,Gonzalez-Dugo V..,Calderon R..,...&Navas-Cortes J.A..(2021).Divergent abiotic spectral pathways unravel pathogen stress signals across species.Nature Communications,12(1). |
MLA | Zarco-Tejada P.J.,et al."Divergent abiotic spectral pathways unravel pathogen stress signals across species".Nature Communications 12.1(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。