CCPortal
DOI10.1038/s41467-021-25914-8
A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries
Sera F.; Armstrong B.; Abbott S.; Meakin S.; O’Reilly K.; von Borries R.; Schneider R.; Royé D.; Hashizume M.; Pascal M.; Tobias A.; Vicedo-Cabrera A.M.; Hu W.; Tong S.; Lavigne E.; Correa P.M.; Meng X.; Kan H.; Kynčl J.; Urban A.; Orru H.; Ryti N.R.I.; Jaakkola J.J.K.; Cauchemez S.; Dallavalle M.; Schneider A.; Zeka A.; Honda Y.; Ng C.F.S.; Alahmad B.; Rao S.; Di Ruscio F.; Carrasco-Escobar G.; Seposo X.; Holobâcă I.H.; Kim H.; Lee W.; Íñiguez C.; Ragettli M.S.; Aleman A.; Colistro V.; Bell M.L.; Zanobetti A.; Schwartz J.; Dang T.N.; Scovronick N.; de Sousa Zanotti Stagliorio Coélho M.; Diaz M.H.; Zhang Y.; Russell T.W.; Koltai M.; Kucharski A.J.; Barnard R.C.; Quaife M.; Jarvis C.I.; Lei J.; Munday J.D.; Chan Y.-W.D.; Quilty B.J.; Eggo R.M.; Flasche S.; Foss A.M.; Clifford S.; Tully D.C.; Edmunds W.J.; Klepac P.; Brady O.; Krauer F.; Procter S.R.; Jombart T.; Rosello A.; Showering A.; Funk S.; Hellewell J.; Sun F.Y.; Endo A.; Williams J.; Gimma A.; Waterlow N.R.; Prem K.; Bosse N.I.; Gibbs H.P.; Atkins K.E.; Pearson C.A.B.; Jafari Y.; Villabona-Arenas C.J.; Jit M.; Nightingale E.S.; Davies N.G.; van Zandvoort K.; Liu Y.; Sandmann F.G.; Waites W.; Abbas K.; Medley G.; Knight G.M.; Gasparrini A.; Lowe R.; MCC Collaborative Research Network; CMMID COVID-19 Working Group
发表日期2021
ISSN2041-1723
卷号12期号:1
英文摘要There is conflicting evidence on the influence of weather on COVID-19 transmission. Our aim is to estimate weather-dependent signatures in the early phase of the pandemic, while controlling for socio-economic factors and non-pharmaceutical interventions. We identify a modest non-linear association between mean temperature and the effective reproduction number (Re) in 409 cities in 26 countries, with a decrease of 0.087 (95% CI: 0.025; 0.148) for a 10 °C increase. Early interventions have a greater effect on Re with a decrease of 0.285 (95% CI 0.223; 0.347) for a 5th - 95th percentile increase in the government response index. The variation in the effective reproduction number explained by government interventions is 6 times greater than for mean temperature. We find little evidence of meteorological conditions having influenced the early stages of local epidemics and conclude that population behaviour and government interventions are more important drivers of transmission. © 2021, The Author(s).
语种英语
scopus关键词COVID-19; cross section; environmental factor; epidemic; parasite transmission; severe acute respiratory syndrome; absolute humidity; Article; controlled study; coronavirus disease 2019; cross-sectional study; early intervention; effective reproduction number; epidemic; government; human; meteorological phenomena; meteorology; nonhuman; Northern Hemisphere; relative humidity; Severe acute respiratory syndrome coronavirus 2; socioeconomics; solar radiation; Southern Hemisphere; virus transmission; weather; basic reproduction number; city; epidemiology; meta analysis (topic); pandemic; pathogenicity; regression analysis; season; temperature; SARS coronavirus; Basic Reproduction Number; Cities; COVID-19; Cross-Sectional Studies; Humans; Meta-Analysis as Topic; Meteorological Concepts; Pandemics; Regression Analysis; SARS-CoV-2; Seasons; Temperature; Weather
来源期刊Nature Communications
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/251329
作者单位Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Statistics, Computer Science and Applications “G. Parenti”, University of Florence, Florence, Italy; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom; Charité Universitätsmedizin, Berlin, Germany; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; Forecast Department, European Centre for Medium-Range Weather Forecast (ECMWF), Reading, United Kingdom; Φ-Lab, European Space Agency, Frascati, Italy; Department of Geography, CIBER of Epidemiology and Public Health (CIBERESP), University of Santiago de Compostela, Santiago de Compostela, Spain; Department of Paediatric Infectious Disease, Institute of Tropical Medicin...
推荐引用方式
GB/T 7714
Sera F.,Armstrong B.,Abbott S.,et al. A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries[J],2021,12(1).
APA Sera F..,Armstrong B..,Abbott S..,Meakin S..,O’Reilly K..,...&CMMID COVID-19 Working Group.(2021).A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries.Nature Communications,12(1).
MLA Sera F.,et al."A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries".Nature Communications 12.1(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sera F.]的文章
[Armstrong B.]的文章
[Abbott S.]的文章
百度学术
百度学术中相似的文章
[Sera F.]的文章
[Armstrong B.]的文章
[Abbott S.]的文章
必应学术
必应学术中相似的文章
[Sera F.]的文章
[Armstrong B.]的文章
[Abbott S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。