Climate Change Data Portal
DOI | 10.1073/pnas.2100575118 |
The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits | |
Letelier J.; Naranjo S.; Sospedra-Arrufat I.; Ramon Martinez-Morales J.; Lopez-Rios J.; Shubin N.; Gomez-Skarmeta J.L. | |
发表日期 | 2021 |
ISSN | 0027-8424 |
卷号 | 118期号:46 |
英文摘要 | One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior-posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 downregulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages. © 2021 National Academy of Sciences. All rights reserved. |
英文关键词 | Fin growth; Fin-to-limb transition; Gli3; Shh |
语种 | 英语 |
scopus关键词 | animal tissue; Article; body patterning; cell proliferation; controlled study; digit (body part); down regulation; embryo; fin (organ); fish; gene; gene function; gene regulatory network; Gli3 gene; mouse; mutant; nonhuman; Oryzias latipes; Shh gene; animal; body patterning; evolution; fin (organ); gene expression regulation; gene regulatory network; genetics; growth, development and aging; limb; Oryzias; fish protein; Gli3 protein, mouse; nerve protein; transcriptional activator GLI3; Animal Fins; Animals; Biological Evolution; Body Patterning; Cell Proliferation; Extremities; Fish Proteins; Gene Expression Regulation, Developmental; Gene Regulatory Networks; Mice; Nerve Tissue Proteins; Oryzias; Zinc Finger Protein Gli3 |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/250992 |
作者单位 | Centro Andaluz de Biologia del Desarrollo, Consejo Superior de Investigaciones Cientificas, Universidad Pablo de Olavide, and Junta de Andalucia, Sevilla, 41013, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, United States |
推荐引用方式 GB/T 7714 | Letelier J.,Naranjo S.,Sospedra-Arrufat I.,et al. The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits[J],2021,118(46). |
APA | Letelier J..,Naranjo S..,Sospedra-Arrufat I..,Ramon Martinez-Morales J..,Lopez-Rios J..,...&Gomez-Skarmeta J.L..(2021).The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits.Proceedings of the National Academy of Sciences of the United States of America,118(46). |
MLA | Letelier J.,et al."The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits".Proceedings of the National Academy of Sciences of the United States of America 118.46(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。