CCPortal
DOI10.1038/s41467-022-28033-0
Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning
Bolibar J.; Rabatel A.; Gouttevin I.; Zekollari H.; Galiez C.
发表日期2022
ISSN2041-1723
卷号13期号:1
英文摘要Glaciers and ice caps are experiencing strong mass losses worldwide, challenging water availability, hydropower generation, and ecosystems. Here, we perform the first-ever glacier evolution projections based on deep learning by modelling the 21st century glacier evolution in the French Alps. By the end of the century, we predict a glacier volume loss between 75 and 88%. Deep learning captures a nonlinear response of glaciers to air temperature and precipitation, improving the representation of extreme mass balance rates compared to linear statistical and temperature-index models. Our results confirm an over-sensitivity of temperature-index models, often used by large-scale studies, to future warming. We argue that such models can be suitable for steep mountain glaciers. However, glacier projections under low-emission scenarios and the behaviour of flatter glaciers and ice caps are likely to be biased by mass balance models with linear sensitivities, introducing long-term biases in sea-level rise and water resources projections. © 2022, The Author(s).
语种英语
scopus关键词air temperature; climate change; future prospect; glacier mass balance; ice cap; machine learning; nonlinearity; sensitivity analysis; air temperature; article; climate change; deep learning; glacier; ice cap; precipitation; sea level rise; temperature sensitivity; warming; water availability; Alps; mountain; Alps; France
来源期刊Nature Communications
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/250527
作者单位Univ. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l’Environnement, Grenoble, France; INRAE, UR RiverLy, Lyon-Villeurbanne, France; Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, Netherlands; Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands; Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium; Univ. Grenoble Alpes, CNRS, G-INP, Laboratoire Jean Kuntzmann, Grenoble, France
推荐引用方式
GB/T 7714
Bolibar J.,Rabatel A.,Gouttevin I.,et al. Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning[J],2022,13(1).
APA Bolibar J.,Rabatel A.,Gouttevin I.,Zekollari H.,&Galiez C..(2022).Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning.Nature Communications,13(1).
MLA Bolibar J.,et al."Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning".Nature Communications 13.1(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bolibar J.]的文章
[Rabatel A.]的文章
[Gouttevin I.]的文章
百度学术
百度学术中相似的文章
[Bolibar J.]的文章
[Rabatel A.]的文章
[Gouttevin I.]的文章
必应学术
必应学术中相似的文章
[Bolibar J.]的文章
[Rabatel A.]的文章
[Gouttevin I.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。