CCPortal
DOI10.1016/j.atmosenv.2019.117205
An eigenvector spatial filtering based spatially varying coefficient model for PM2.5 concentration estimation: A case study in Yangtze River Delta region of China
Tan H.; Chen Y.; Wilson J.P.; Zhang J.; Cao J.; Chu T.
发表日期2020
ISSN1352-2310
卷号223
英文摘要Ordinary interpolation using PM2.5 ground monitoring observations can seldom reveal the PM2.5 concentration distribution characteristics due to the uneven distribution of monitoring stations and because ordinary linear regression often neglects the spatial autocorrelation among geographical locations. In this study, we developed an eigenvector spatial filtering based spatially varying coefficient (ESF-SVC) model to estimate ground PM2.5 concentration. To generate and analyze the spatiotemporal distribution of PM2.5 concentration in the China's Yangtze River Delta (YRD) region, ESF-SVC model which uses a set of satellite remote sensing data, factory locations, and road networks, was fitted at different time scales from December 2015 to November 2016. Comparisons among the ESF-SVC, eigenvector spatial filtering (ESF) and geographically weighted regression (GWR) models suggest that the ESF-SVC model with an average annual and seasonal adjusted R2 of 0.684, is 10.3 and 13.8% higher than the GWR and ESF models, respectively. The average annual and seasonal cross validation root mean square error (RMSE) of the ESF-SVC models lower than the GWR and ESF models. PM2.5 concentration distribution maps for annual and seasonal were produced to illustrate YRD region's spatiotemporal characteristics. In summary, an ESF-SVC model offers a reliable approach for PM2.5 concentrations estimation in large area. © 2019 Elsevier Ltd
关键词Eigenvector spatial filteringGWRPM2.5Spatially varying coefficientYangtze river delta region
语种英语
scopus关键词Eigenvalues and eigenfunctions; Mean square error; Microchannels; Remote sensing; Rivers; Static Var compensators; Geographically weighted regression models; PM2.5; Satellite remote sensing data; Spatial filterings; Spatially varying coefficients; Spatiotemporal characteristics; Spatiotemporal distributions; Yangtze river delta; Beamforming; concentration (composition); eigenvalue; interpolation; particle size; particulate matter; remote sensing; spatial analysis; spatiotemporal analysis; article; China; filtration; geographically weighted regression; neglect; remote sensing; river; China; Yangtze Delta; Spring viremia of carp virus
来源期刊ATMOSPHERIC ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/249334
作者单位School of Resource and Environment Science, Wuhan University, Wuhan, Hubei 430079, China; Spatial Sciences Institute, University of Southern California, Los Angeles, CA 90089-0374, United States; Beijing Wanfang Technology Co., Ltd. Shanghai Branch, Shanghai, 201210, China
推荐引用方式
GB/T 7714
Tan H.,Chen Y.,Wilson J.P.,et al. An eigenvector spatial filtering based spatially varying coefficient model for PM2.5 concentration estimation: A case study in Yangtze River Delta region of China[J],2020,223.
APA Tan H.,Chen Y.,Wilson J.P.,Zhang J.,Cao J.,&Chu T..(2020).An eigenvector spatial filtering based spatially varying coefficient model for PM2.5 concentration estimation: A case study in Yangtze River Delta region of China.ATMOSPHERIC ENVIRONMENT,223.
MLA Tan H.,et al."An eigenvector spatial filtering based spatially varying coefficient model for PM2.5 concentration estimation: A case study in Yangtze River Delta region of China".ATMOSPHERIC ENVIRONMENT 223(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan H.]的文章
[Chen Y.]的文章
[Wilson J.P.]的文章
百度学术
百度学术中相似的文章
[Tan H.]的文章
[Chen Y.]的文章
[Wilson J.P.]的文章
必应学术
必应学术中相似的文章
[Tan H.]的文章
[Chen Y.]的文章
[Wilson J.P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。