Climate Change Data Portal
DOI | 10.1016/j.atmosenv.2020.117322 |
Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data | |
Qin K.; Han X.; Li D.; Xu J.; Li D.; Loyola D.; Zhou X.; Xue Y.; Zhang K.; Yuan L. | |
发表日期 | 2020 |
ISSN | 1352-2310 |
卷号 | 224 |
英文摘要 | The OMI NO2 standard product, OMNO2d, has been widely used in estimating surface NO2 concentrations. The Peking University Ozone Monitoring Instrument NO2 product (POMINO) is claimed to provide an improved quality over east-central China. This study estimated one year (Dec.2016–Nov.2017) of surface NO2 concentrations at satellite overpass time based on OMNO2d data and POMINO data, respectively. We used an extra-trees (ET) regression model to convey the non-linear relationship between surface NO2 and predictors, and compared the prediction accuracy with that of random forests (RF) regression model. The ET model showed a better estimation performance than the RF model, with the cross-validation R2 of 0.72 (RMSE = 9.20 μg/m3) and R2 of 0.70 (RMSE = 9.42 μg/m3) based on POMINO and OMNO2d data, respectively. The POMINO-derived monthly mean surface NO2 concentrations were closer to ground NO2 measurements than that OMNO2d-derived. Although the estimations from both satellite products were underestimated in polluted situations, the use of POMINO reduced the underestimation as compared to the use of OMNO2d data. © 2020 Elsevier Ltd |
关键词 | Extra treesNO2OMIOMNO2dPOMINORandom forest |
语种 | 英语 |
scopus关键词 | Decision trees; Forestry; Random forests; Regression analysis; Satellites; Ultraviolet spectrometers; Estimation performance; Extra-trees; Non-linear relationships; OMNO2d; Ozone monitoring instruments; POMINO; Prediction accuracy; Satellite products; Nitrogen oxides; nitrogen dioxide; ozone; concentration (composition); nitrous oxide; numerical model; regression analysis; satellite data; Article; concentration (parameter); controlled study; cross validation; prediction; priority journal; random forest; surface property; China |
来源期刊 | ATMOSPHERIC ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/249273 |
作者单位 | School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China; German Aerospace Center, Remote Sensing Technology Institute, Weßling, Germany |
推荐引用方式 GB/T 7714 | Qin K.,Han X.,Li D.,et al. Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data[J],2020,224. |
APA | Qin K..,Han X..,Li D..,Xu J..,Li D..,...&Yuan L..(2020).Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data.ATMOSPHERIC ENVIRONMENT,224. |
MLA | Qin K.,et al."Satellite-based estimation of surface NO2 concentrations over east-central China: A comparison of POMINO and OMNO2d data".ATMOSPHERIC ENVIRONMENT 224(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Qin K.]的文章 |
[Han X.]的文章 |
[Li D.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Qin K.]的文章 |
[Han X.]的文章 |
[Li D.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Qin K.]的文章 |
[Han X.]的文章 |
[Li D.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。