Climate Change Data Portal
DOI | 10.1016/j.atmosenv.2020.117535 |
OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning | |
Lautenschlager F.; Becker M.; Kobs K.; Steininger M.; Davidson P.; Krause A.; Hotho A. | |
发表日期 | 2020 |
ISSN | 1352-2310 |
卷号 | 233 |
英文摘要 | To assess the exposure of citizens to pollutants like NOx or particulate matter in urban areas, land use regression (LUR) models are a well established method. LUR models leverage information about environmental and anthropogenic factors such as cars, heating, or industry to predict air pollution in areas where no measurements have been made. However, existing approaches are often not globally applicable and require tedious hyper-parameter tuning to enable high quality predictions. In this work, we tackle these issues by introducing OpenLUR, an off-the-shelf approach for modeling air pollution that (i) works on a set of novel features solely extracted from the globally and openly available data source OpenStreetMap and (ii) is based on state-of-the-art machine learning featuring automated hyper-parameter tuning in order to minimize manual effort. We show that our proposed features are able to outperform their counterparts from local and closed sources, and illustrate how automated hyper parameter tuning can yield competitve results while alleviating the need for expert knowledge in machine learning and manual effort. Importantly, we further demonstrate the potential of the global availability of our features by applying cross-learning across different cities in order to reduce the need for a large amount of training samples. Overall, OpenLUR represents an off-the-shelf approach that facilitates easily reproducible experiments and the development of globally applicable models. © 2020 Elsevier Ltd |
关键词 | Automated machine learningLand use regressionLUROpenStreetMapPollution |
语种 | 英语 |
scopus关键词 | Air pollution; Land use; Air Pollution Modeling; Anthropogenic factors; Closed source; Expert knowledge; Hyper-parameter; Land use regression; Particulate Matter; Training sample; Machine learning; anthropogenic source; atmospheric pollution; machine learning; numerical model; particulate matter; regression analysis; software; air pollution; article; city; land use; machine learning |
来源期刊 | ATMOSPHERIC ENVIRONMENT |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/249123 |
作者单位 | Chair for Data Science, Computer Science, University of Würzburg, Am Hubland, Würzburg, 97074, Germany; Stanford University, United States |
推荐引用方式 GB/T 7714 | Lautenschlager F.,Becker M.,Kobs K.,et al. OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning[J],2020,233. |
APA | Lautenschlager F..,Becker M..,Kobs K..,Steininger M..,Davidson P..,...&Hotho A..(2020).OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning.ATMOSPHERIC ENVIRONMENT,233. |
MLA | Lautenschlager F.,et al."OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning".ATMOSPHERIC ENVIRONMENT 233(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。