Climate Change Data Portal
DOI | 10.1016/j.atmosenv.2020.118123 |
First surface measurement of variation of Cloud Condensation Nuclei (CCN) concentration over the Pristine Himalayan region of Garhwal, Uttarakhand, India | |
Gautam A.S.; Tripathi S.N.; Joshi A.; Mandariya A.K.; Singh K.; Mishra G.; Kumar S.; Ramola R.C. | |
发表日期 | 2021 |
ISSN | 1352-2310 |
卷号 | 246 |
英文摘要 | A Droplet Measurement Technology (DMT) Cloud Condensation Nuclei Counter (CCNC) was deployed to measure cloud condensation nuclei (CCN) for the first time in the pristine Himalayan region at Himalayan Clouds Observatory (HCO), Swami Ram Tirtha (SRT) Campus (30°34′ N, 78°41′ E, 1706 m AMSL), Hemvati Nandan Bahuguna (HNB) Garhwal University, Badshahithaul, Tehri Garhwal, Uttarakhand, India. The CCN concentration (NCCN) was observed at four supersaturation levels (SS: 0.2, 0.5, 0.8, and 1.0%). In this study, we reported CCN concentration at 0.5% SS in different weather conditions from Aug 01, 2018 to Jun 30, 2019. During this observation period, the monthly averaged value of CCN concentration ranged between 1098.3 ± 448.9 cm−3 (mean ± SD) and 3842.9 ± 2512.9 cm−3. It covers a significantly wide range of daily averaged concentrations from the minimum concentration of 43.84 cm−3 (during heavy wet scavenging due to snowfall) to maximum concentration of 17000 cm−3 (during the events of a forest fire) at the observation site. The highest CCN concentration is observed at the time of sunrise (~07:00 a.m.) and after the sunset (~07:00 p.m.) for the diurnal variation of monsoon, post-monsoon, and winter season. Pre-monsoon season shows peak values at 10:00 a.m. and at 07:00 p.m. with higher concentrations at night hours. The possible reasons for maximum concentration in morning and evening time could be upliftment and settlement of CCN because of the convection process, anthropogenic emission, vehicular emission, and biomass burning in the residential area and valley region adjacent to HCO, Badshahithaul. The highest CCN concentration (3842.9 ± 2513 cm−3) values of the whole observation period were observed in May 2019. It was significantly affected by the heavy fire activities over the Uttarakhand and nearby IGP regions. Diurnal variation of CCN concentration during the HFAD shows higher values in the night time differing from the diurnal pattern of CCN for other months of the observation period. The long-range transport of air mass could also contribute to the high CCN concentration values, as found through the five-day air mass backward trajectory analysis. The lowest value of CCN concentration corresponds to the heavy rains and snowfall days, possibly caused by extensive wet scavenging. Cluster analysis of the air mass trajectories used for the allocation and classification of the possible sources of pollutants reaching the observation site. The highest fraction of CCN concentration (more than 2000 cm−3) corresponds to the air mass from the arid and semi-arid regions of Asian countries. Large air mass fraction (~40–60%) with moderate CCN concentration was received from northwestern IGP region and foothills of central Himalaya. © 2020 Elsevier Ltd |
关键词 | AerosolsAir-mass back trajectoryCCNCWTGarhwal region |
语种 | 英语 |
scopus关键词 | Atmospheric thermodynamics; Cluster analysis; Condensation; Deforestation; Snow; Surface measurement; Air mass trajectories; Anthropogenic emissions; Arid and semi-arid regions; Backward trajectory analysis; Cloud condensation nuclei; Long range transport; Maximum concentrations; Measurement technologies; Atmospheric movements; rain; aerosol; altitude; Article; autumn; circadian rhythm; climate; cloud condensation nuclei; cluster analysis; comparative study; concentration (parameter); humidity; industrialization; liquid; maximum concentration; meteorology; minimum concentration; priority journal; rainy season; rural area; seasonal variation; spring; summer; surface area; temperature; temporal analysis; time series analysis; urbanization; Uttarakhand; water content; wind speed; winter |
来源期刊 | ATMOSPHERIC ENVIRONMENT |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/248625 |
作者单位 | Department of Physics, Hemvati Nandan Bahuguna Garhwal University Srinagar Uttarakhand, India; Department of Civil Engineering, Indian Institute of Technology, Kanpur, India; Department of Physics, Hemvati Nandan Bahuguna Garhwal University, Badshahi Thaul Campus, Tehri Garhwal, Uttarakhand, India; Nuclear Engineering and Technology Programme, Department of Mechanical Engineering, IIT, Kanpur, India |
推荐引用方式 GB/T 7714 | Gautam A.S.,Tripathi S.N.,Joshi A.,et al. First surface measurement of variation of Cloud Condensation Nuclei (CCN) concentration over the Pristine Himalayan region of Garhwal, Uttarakhand, India[J],2021,246. |
APA | Gautam A.S..,Tripathi S.N..,Joshi A..,Mandariya A.K..,Singh K..,...&Ramola R.C..(2021).First surface measurement of variation of Cloud Condensation Nuclei (CCN) concentration over the Pristine Himalayan region of Garhwal, Uttarakhand, India.ATMOSPHERIC ENVIRONMENT,246. |
MLA | Gautam A.S.,et al."First surface measurement of variation of Cloud Condensation Nuclei (CCN) concentration over the Pristine Himalayan region of Garhwal, Uttarakhand, India".ATMOSPHERIC ENVIRONMENT 246(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。