Climate Change Data Portal
DOI | 10.1016/j.atmosenv.2020.118143 |
DecSolNet: A noise resistant missing information recovery framework for daily satellite NO2 columns | |
Zhu S.; Xu J.; Yu C.; Wang Y.; Efremenko D.S.; Li X.; Sui Z. | |
发表日期 | 2021 |
ISSN | 1352-2310 |
卷号 | 246 |
英文摘要 | A novel statistical method (hereafter referred to as DecSolNet) for reconstructing satellite NO2 columns is introduced. The method has been developed and evaluated by comparing its performance with four benchmark models in three scenarios. When the amount of satellite data is limited, DecSolNet outperforms the benchmark models and its performance does not degrade with noisy inputs. The implementation of DecSolNet consists of: (1) feature extraction, sequential data decomposition in both temporal and frequency domains; (2) NO2 columns reconstruction by training a deep neural network. In three cross-validations, the averaged R2 score of DecSolNet reaches 0.9, which is better than that of the most benchmark models. The multi-layer perceptron (MLP) has a higher R2 score, but it degrades greatly with noisy inputs, while the performance of DecSolNet remains robust with an R2 of ~ 0.8. The bias of DecSolNet is small with an average of 1.61 μg/m3. In addition, DecSolNet is a reliable learning machine, the averaged loss and standard deviation are 0.42 μg/m3 and 0.04 μg/m3, respectively. © 2020 Elsevier Ltd |
关键词 | Data reconstructionDeep learningEMDNO2 columnsRemote sensingTime series decomposition |
语种 | 英语 |
scopus关键词 | Benchmarking; Deep neural networks; Multilayer neural networks; Nitrogen oxides; Satellites; Benchmark models; Cross validation; Frequency domains; Learning machines; Missing information; Multi layer perceptron; Sequential data; Standard deviation; Learning systems; nitrogen dioxide; Article; controlled study; cross validation; decomposition; deep neural network; feature extraction; Hilbert Huang transform; machine learning; meteorology; multilayer perceptron; noise; priority journal; statistical analysis; time series analysis |
来源期刊 | ATMOSPHERIC ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/248623 |
作者单位 | Department of Geography, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, United Kingdom; Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Weßling, 82234, Germany; Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China; Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China; China Centre for Resources Satellite Data and Application, Beijing, 100092, China |
推荐引用方式 GB/T 7714 | Zhu S.,Xu J.,Yu C.,et al. DecSolNet: A noise resistant missing information recovery framework for daily satellite NO2 columns[J],2021,246. |
APA | Zhu S..,Xu J..,Yu C..,Wang Y..,Efremenko D.S..,...&Sui Z..(2021).DecSolNet: A noise resistant missing information recovery framework for daily satellite NO2 columns.ATMOSPHERIC ENVIRONMENT,246. |
MLA | Zhu S.,et al."DecSolNet: A noise resistant missing information recovery framework for daily satellite NO2 columns".ATMOSPHERIC ENVIRONMENT 246(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhu S.]的文章 |
[Xu J.]的文章 |
[Yu C.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhu S.]的文章 |
[Xu J.]的文章 |
[Yu C.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhu S.]的文章 |
[Xu J.]的文章 |
[Yu C.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。