CCPortal
DOI10.1016/j.atmosenv.2021.118236
Simulation of chemical transport model estimates by means of a neural network using meteorological data
Vlasenko A.; Matthias V.; Callies U.
发表日期2021
ISSN1352-2310
卷号254
英文摘要Chemical substances of either anthropogenic or natural origin affect air quality and, as a consequence, also the health of the population. Therefore, there is a high demand for reliable air quality scenarios that can support possible management decisions. However, generating long term assessments of air quality assuming different emission scenarios is still a great challenge when using detailed atmospheric chemistry models. In this study, we test machine learning technique based on neural networks (NN) to emulate process-oriented modeling outcomes. A successfully calibrated NN might estimate concentrations of chemical substances in the air several orders faster than the original model and with reasonably small errors. We designed a simple recurrent 3-layer NN to reproduce daily mean concentrations of NO2, SO2 and C2H6 over Europe as simulated by the Community Multiscale Air Quality model (CMAQ). The general structure of the NN can be shown to approximate a continuity equation. Inputs of the network are daily mean meteorological state variables, taken from the climate model COSMO-CLM. The proposed NN emulates CMAQ outputs with an error not exceeding the difference between CMAQ and other known chemical transport models. © 2021 The Authors
关键词Artificial intelligenceAtmospheric modelingChemical scenario forecastingChemical transport modelsEthaneNeural networkNitrogen dioxideSulfur dioxide
语种英语
scopus关键词Air quality; Atmospheric chemistry; Atmospheric movements; Climate models; Learning systems; Meteorology; Neural networks; Sulfur dioxide; Anthropogenics; Atmospheric model; Chemical scenario forecasting; Chemical substance; Chemical transport models; Community multi-scale air quality models; Meteorological data; Model estimates; Neural-networks; Nitrogen dioxides; Nitrogen oxides; carbon; ethane; hydrogen; nitrogen dioxide; sulfur dioxide; air quality; artificial neural network; atmospheric modeling; climate modeling; concentration (composition); data set; public health; simulation; air quality; algorithm; artificial neural network; calculation; chemical reaction; chemical structure; community multiscale air quality model; Europe; human; meteorology; model; priority journal; recurrent neural network; seasonal variation; sensitivity analysis; simulation; spring; summer; surface property; validation study; wind speed; winter; Europe
来源期刊ATMOSPHERIC ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/248466
作者单位Helmholtz Zentrum Geesthacht, Max-Planck-Straße 1, Geesthacht, 21502, Germany
推荐引用方式
GB/T 7714
Vlasenko A.,Matthias V.,Callies U.. Simulation of chemical transport model estimates by means of a neural network using meteorological data[J],2021,254.
APA Vlasenko A.,Matthias V.,&Callies U..(2021).Simulation of chemical transport model estimates by means of a neural network using meteorological data.ATMOSPHERIC ENVIRONMENT,254.
MLA Vlasenko A.,et al."Simulation of chemical transport model estimates by means of a neural network using meteorological data".ATMOSPHERIC ENVIRONMENT 254(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vlasenko A.]的文章
[Matthias V.]的文章
[Callies U.]的文章
百度学术
百度学术中相似的文章
[Vlasenko A.]的文章
[Matthias V.]的文章
[Callies U.]的文章
必应学术
必应学术中相似的文章
[Vlasenko A.]的文章
[Matthias V.]的文章
[Callies U.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。