CCPortal
DOI10.5194/acp-20-7979-2020
Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds
K. Miltenberger A.; R. Field P.; H. Hill A.; J. Heymsfield A.
发表日期2020
ISSN1680-7316
起始页码7979
结束页码8001
卷号20期号:13
英文摘要Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the Ice in Clouds Experiment Layer Clouds (ICE-L) campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterizations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature < 1 K; specific humidity < 0:2 g kg1; vertical velocity < 1ms1; cloud droplet number concentration < 40 cm3), with the exception of an overestimated total condensate content and too long a sedimentation tail. The accurate reproduction of the environmental thermodynamic and dynamical wave structure enables the model to reproduce the right cloud in the right place and at the right time. All heterogeneous freezing parameterizations except Atkinson et al. (2013) perform reasonably well, with the best agreement in terms of the temperature dependency of ice crystal number concentrations for the parameterizations of DeMott et al. (2010) and Tobo et al. (2013). The novel capabilities of CASIM allowed testing of the impact of assuming different soluble fractions of dust particles on immersion freezing, but this is found to only have a minor impact on hydrometeor mass and number concentrations. The simulations were further used to quantify the modification of moisture and aerosol profiles by the wave cloud. The changes in both variables are on order of 15% of their upstream values, but the modifications have very different vertical structures for the two variables. Using a large number of idealized simulations we investigate how the induced changes depend on the wave period (100 1800 s), cloud top temperature (15 to 50 C), and cloud thickness (1 5 km) and propose a conceptual model to describe these dependencies. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
语种英语
scopus关键词aerosol; atmospheric modeling; atmospheric moisture; cloud microphysics; condensate; freezing; ice crystal; orographic effect; parameterization; thermodynamics; vertical distribution
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/247662
作者单位Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom; Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany; Met Office, Exeter, United Kingdom; National Center for Atmospheric Research, Boulder, CO, United States
推荐引用方式
GB/T 7714
K. Miltenberger A.,R. Field P.,H. Hill A.,et al. Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds[J],2020,20(13).
APA K. Miltenberger A.,R. Field P.,H. Hill A.,&J. Heymsfield A..(2020).Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(13).
MLA K. Miltenberger A.,et al."Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.13(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[K. Miltenberger A.]的文章
[R. Field P.]的文章
[H. Hill A.]的文章
百度学术
百度学术中相似的文章
[K. Miltenberger A.]的文章
[R. Field P.]的文章
[H. Hill A.]的文章
必应学术
必应学术中相似的文章
[K. Miltenberger A.]的文章
[R. Field P.]的文章
[H. Hill A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。