Climate Change Data Portal
DOI | 10.5194/acp-20-9183-2020 |
Molecular understanding of new-particle formation from α-pinene between -50 and +25 °C | |
Simon M.; Dada L.; Heinritzi M.; Scholz W.; Stolzenburg D.; Fischer L.; C. Wagner A.; Kürten A.; Rörup B.; He X.-C.; Almeida J.; Baalbaki R.; Baccarini A.; S. Bauer P.; Beck L.; Bergen A.; Bianchi F.; Bräkling S.; Brilke S.; Caudillo L.; Chen D.; Chu B.; Dias A.; C. Draper D.; Duplissy J.; El-Haddad I.; Finkenzeller H.; Frege C.; Gonzalez-Carracedo L.; Gordon H.; Granzin M.; Hakala J.; Hofbauer V.; R. Hoyle C.; Kim C.; Kong W.; Lamkaddam H.; P. Lee C.; Lehtipalo K.; Leiminger M.; Mai H.; E. Manninen H.; Marie G.; Marten R.; Mentler B.; Molteni U.; Nichman L.; Nie W.; Ojdanic A.; Onnela A.; Partoll E.; Petäjä T.; Pfeifer J.; Philippov M.; L. J. Quéléver L.; Ranjithkumar A.; P. Rissanen M.; Schallhart S.; Schobesberger S.; Schuchmann S.; Shen J.; Sipilä M.; Steiner G.; Stozhkov Y.; Tauber C.; J. Tham Y.; Tome A.R.; Vazquez-Pufleau M.; L. Vogel A.; Wagner R.; Wang M.; S. Wang D.; Wang Y.; K. Weber S.; Wu Y.; Xiao M.; Yan C.; Ye P.; Ye Q.; Zauner-Wieczorek M.; Zhou X.; Baltensperger U.; Dommen J.; C. Flagan R.; Hansel A.; Kulmala M.; Volkamer R.; M. Winkler P.; R. Worsnop D.; M. Donahue N.; Kirkby J.; Curtius J. | |
发表日期 | 2020 |
ISSN | 1680-7316 |
起始页码 | 9183 |
结束页码 | 9207 |
卷号 | 20期号:15 |
英文摘要 | Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth s climate. HOMs are formed by rapid, gasphase autoxidation of volatile organic compounds (VOCs) such as -pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from C25 to 50 C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1:7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2% at 25 C to 0.7% at 50 C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at 50 C compared with 25 C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. |
语种 | 英语 |
scopus关键词 | atmospheric chemistry; biogenic deposit; chemical composition; cluster analysis; evaporation; molecular analysis; trace element; troposphere; vapor pressure |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/247605 |
作者单位 | Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany; Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 00014, Finland; Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, 6020, Austria; Ionicon Analytik GmbH, Innsbruck, 6020, Austria; Faculty of Physics, University of Vienna, Vienna, 1090, Austria; Department of Chemistry and Cires, University of Colorado Boulder, Boulder, CO 80309-0215, United States; Cern, Geneva, 1211, Switzerland; Faculdade de Ciências, Universidade de Lisboa, Lisbon, 1749-016, Portugal; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Psi, Villigen, 5232, Switzerland; Tofwerk Ag, Thun, 3600, Switzerland; Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States; Department of Chemistry, University of California, Irvine, CA 92697, United States; Helsinki Institute of Physi... |
推荐引用方式 GB/T 7714 | Simon M.,Dada L.,Heinritzi M.,et al. Molecular understanding of new-particle formation from α-pinene between -50 and +25 °C[J],2020,20(15). |
APA | Simon M..,Dada L..,Heinritzi M..,Scholz W..,Stolzenburg D..,...&Curtius J..(2020).Molecular understanding of new-particle formation from α-pinene between -50 and +25 °C.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(15). |
MLA | Simon M.,et al."Molecular understanding of new-particle formation from α-pinene between -50 and +25 °C".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.15(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。