CCPortal
DOI10.5194/acp-21-2427-2021
Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering
Robrecht S.; Vogel B.; Tilmes S.; Müller R.
发表日期2021
ISSN1680-7316
起始页码2427
结束页码2455
卷号21期号:4
英文摘要The potential of heterogeneous chlorine activation in the midlatitude lowermost stratosphere during summer is a matter of debate. The occurrence of heterogeneous chlorine activation through the presence of aerosol particles could cause ozone destruction. This chemical process requires low temperatures and is accelerated by an enhancement of the stratospheric water vapour and sulfate amount. In particular, the conditions present in the lowermost stratosphere during the North American Summer Monsoon season (NAM) are expected to be cold and moist enough to cause the occurrence of heterogeneous chlorine activation. Furthermore, the temperatures, the water vapour mixing ratio and the sulfate aerosol abundance are affected by future global warming and by the potential application of sulfate geoengineering. Hence, both future scenarios could promote this ozone destruction process. We investigate the likelihood of the occurrence of heterogeneous chlorine activation and its impact on ozone in the lowermost-stratospheric mixing layer between tropospheric and stratospheric air above central North America (30.6- 49.6° N, 72.25-124.75° W) in summer for conditions today, at the middle and at the end of the 21st century. Therefore, the results of the Geoengineering Large Ensemble Simulations (GLENS) for the lowermost-stratospheric mixing layer between tropospheric and stratospheric air are considered together with 10-day box-model simulations performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In GLENS two future scenarios are simulated: The RCP8.5 global warming scenario and a geoengineering scenario, where sulfur is additionally injected into the stratosphere to keep the global mean surface temperature from changing. In the GLENS simulations, the mixing layer will warm and moisten in both future scenarios with a larger effect in the geoengineering scenario. The likelihood of chlorine activation occurring in the mixing layer is highest in the years 2040-2050 if geoengineering is applied, accounting for 3.3 %. In comparison, the likelihood of conditions today is 1.0 %. At the end of the 21st century, the likelihood of this ozone destruction process occurring decreases.We found that 0.1% of the ozone mixing ratios in the mixing layer above central North America is destroyed for conditions today. A maximum ozone destruction of 0.3% in the mixing layer occurs in the years 2040-2050 if geoengineering is applied. Comparing the southernmost latitude band (30-35° N) and the northernmost latitude band (44-49° N) of the considered region, we found a higher likelihood of the occurrence of heterogeneous chlorine activation in the southernmost latitude band, causing a higher impact on ozone as well. However, the ozone loss process is found to have a minor impact on the midlatitude ozone column. © Author(s) 2021.
语种英语
scopus关键词chlorine; global warming; mixed layer; ozone; stratosphere; sulfate; troposphere; water vapor; North America
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/247137
作者单位Institute for Energy and Climate Research - Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany; Atmospheric Chemistry Observations and Modeling Lab, National Center for Atmospheric Research, Boulder, CO, United States
推荐引用方式
GB/T 7714
Robrecht S.,Vogel B.,Tilmes S.,et al. Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering[J],2021,21(4).
APA Robrecht S.,Vogel B.,Tilmes S.,&Müller R..(2021).Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(4).
MLA Robrecht S.,et al."Potential of future stratospheric ozone loss in the midlatitudes under global warming and sulfate geoengineering".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.4(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Robrecht S.]的文章
[Vogel B.]的文章
[Tilmes S.]的文章
百度学术
百度学术中相似的文章
[Robrecht S.]的文章
[Vogel B.]的文章
[Tilmes S.]的文章
必应学术
必应学术中相似的文章
[Robrecht S.]的文章
[Vogel B.]的文章
[Tilmes S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。