Climate Change Data Portal
DOI | 10.5194/acp-21-3919-2021 |
Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning | |
Stirnberg R.; Cermak J.; Kotthaus S.; Haeffelin M.; Andersen H.; Fuchs J.; Kim M.; Petit J.-E.; Favez O. | |
发表日期 | 2021 |
ISSN | 1680-7316 |
起始页码 | 3919 |
结束页码 | 3948 |
卷号 | 21期号:5 |
英文摘要 | Air pollution, in particular high concentrations of particulate matter smaller than 1 span classCombining double low lineinline-formulam in diameter (PMspan classCombining double low lineinline-formula1), continues to be a major health problem, and meteorology is known to substantially influence atmospheric PM concentrations. However, the scientific understanding of the ways in which complex interactions of meteorological factors lead to high-pollution episodes is inconclusive. In this study, a novel, data-driven approach based on empirical relationships is used to characterize and better understand the meteorology-driven component of PMspan classCombining double low lineinline-formula1 variability. A tree-based machine learning model is set up to reproduce concentrations of speciated PMspan classCombining double low lineinline-formula1 at a suburban site southwest of Paris, France, using meteorological variables as input features. The model is able to capture the majority of occurring variance of mean afternoon total PMspan classCombining double low lineinline-formula1 concentrations (coefficient of determination (span classCombining double low lineinline-formulaiR/i2) of 0.58), with model performance depending on the individual PMspan classCombining double low lineinline-formula1 species predicted. Based on the models, an isolation and quantification of individual, season-specific meteorological influences for process understanding at the measurement site is achieved using SHapley Additive exPlanation (SHAP) regression values. Model results suggest that winter pollution episodes are often driven by a combination of shallow mixed layer heights (MLHs), low temperatures, low wind speeds, or inflow from northeastern wind directions. Contributions of MLHs to the winter pollution episodes are quantified to be on average span classCombining double low lineinline-formulag1/45 span classCombining double low lineinline-formulag/mspan classCombining double low lineinline-formula3 for MLHs below span classCombining double low lineinline-formula<500 m a.g.l. Temperatures below freezing initiate formation processes and increase local emissions related to residential heating, amounting to a contribution to predicted PMspan classCombining double low lineinline-formula1 concentrations of as much as span classCombining double low lineinline-formulag1/49 span classCombining double low lineinline-formulag/mspan classCombining double low lineinline-formula3. Northeasterly winds are found to contribute span classCombining double low lineinline-formulag1/45 span classCombining double low lineinline-formulag/mspan classCombining double low lineinline-formula3 to predicted PMspan classCombining double low lineinline-formula1 concentrations (combined effects of span classCombining double low lineinline-formulaiu/i-and span classCombining double low lineinline-formulaiv/i-wind components), by advecting particles from source regions, e.g. central Europe or the Paris region. Meteorological drivers of unusually high PMspan classCombining double low lineinline-formula1 concentrations in summer are temperatures above span classCombining double low lineinline-formulag1/425 span classCombining double low lineinline-formulagC (contributions of up to span classCombining double low lineinline-formulag1/42.5 span classCombining double low lineinline-formulag/mspan classCombining double low lineinline-formula3), dry spells of several days (maximum contributions of span classCombining double low lineinline-formulag1/41.5 span classCombining double low lineinline-formulag/mspan classCombining double low lineinline-formula3), and wind speeds below span classCombining double low lineinline-formulag1/42 m/s (maximum contributions of span classCombining double low lineinline-formulag1/43 span classCombining double low lineinline-formulag/mspan classCombining double low lineinline-formula3), which cause a lack of dispersion. High-resolution case studies are conducted showing a large variability of processes that can lead to high-pollution episodes. The identification of these meteorological conditions that increase air pollution could help policy makers to adapt policy measures, issue warnings to the public, or assess the effectiveness of air pollution measures./p. © 2021 Copernicus GmbH. All rights reserved. |
语种 | 英语 |
scopus关键词 | advection; atmospheric pollution; concentration (composition); empirical analysis; machine learning; particulate matter; regression analysis |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/247060 |
作者单位 | Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Institut Pierre Simon Laplace, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif sur Yvette, France; Institut National de l'Environnement Industriel et des Risques, Parc Technologique ALATA, Verneuil en Halatte, France |
推荐引用方式 GB/T 7714 | Stirnberg R.,Cermak J.,Kotthaus S.,et al. Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning[J],2021,21(5). |
APA | Stirnberg R..,Cermak J..,Kotthaus S..,Haeffelin M..,Andersen H..,...&Favez O..(2021).Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(5). |
MLA | Stirnberg R.,et al."Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.5(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。