Climate Change Data Portal
DOI | 10.5194/acp-21-9009-2021 |
Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing | |
Staunton-Sykes J.; Aubry T.J.; Shin Y.M.; Weber J.; Marshall L.R.; Luke Abraham N.; Archibald A.; Schmidt A. | |
发表日期 | 2021 |
ISSN | 1680-7316 |
起始页码 | 9009 |
结束页码 | 9029 |
卷号 | 21期号:11 |
英文摘要 | The evolution of volcanic sulfur and the resulting radiative forcing following explosive volcanic eruptions is well understood. Petrological evidence suggests that significant amounts of halogens may be co-emitted alongside sulfur in some explosive volcanic eruptions, and satellite evidence indicates that detectable amounts of these halogens may reach the stratosphere. In this study, we utilise an aerosol-chemistry-climate model to simulate stratospheric volcanic eruption emission scenarios of two sizes, both with and without co-emission of volcanic halogens, in order to understand how co-emitted halogens may alter the life cycle of volcanic sulfur, stratospheric chemistry, and the resulting radiative forcing. We simulate a large (10 Tg of SO2) and very large (56 Tg of SO2) sulfur-only eruption scenario and a corresponding large (10 Tg SO2, 1.5 Tg HCl, 0.0086 Tg HBr) and very large (56 Tg SO2, 15 Tg HCl, 0.086 Tg HBr) co-emission eruption scenario. The eruption scenarios simulated in this work are hypothetical, but they are comparable to Volcanic Explosivity Index (VEI) 6 (e.g. 1991 Mt Pinatubo) and VEI 7 (e.g. 1257 Mt Samalas) eruptions, representing 1-in-50-100-year and 1-in-500-1000-year events, respectively, with plausible amounts of co-emitted halogens based on satellite observations and volcanic plume modelling. We show that co-emission of volcanic halogens and sulfur into the stratosphere increases the volcanic effective radiative forcing (ERF) by 24% and 30% in large and very large co-emission scenarios compared to sulfur-only emission. This is caused by an increase in both the forcing from volcanic aerosol-radiation interactions (ERFari) and composition of the stratosphere (ERFclear;clean). Volcanic halogens catalyse the destruction of stratospheric ozone, which results in significant stratospheric cooling, offsetting the aerosol heating simulated in sulfur-only scenarios and resulting in net stratospheric cooling. The ozone-induced stratospheric cooling prevents aerosol self-lofting and keeps the volcanic aerosol lower in the stratosphere with a shorter lifetime. This results in reduced growth by condensation and coagulation and a smaller peak global-mean effective radius compared to sulfur-only simulations. The smaller effective radius found in both co-emission scenarios is closer to the peak scattering efficiency radius of sulfate aerosol, and thus co-emission of halogens results in larger peak global-mean ERFari (6% and 8 %). Co-emission of volcanic halogens results in significant stratospheric ozone, methane, and water vapour reductions, resulting in significant increases in peak globalmean ERFclear;clean (>100 %), predominantly due to ozone loss. The dramatic global-mean ozone depletion simulated in large (22 %) and very large (57 %) co-emission scenarios would result in very high levels of UV exposure on the Earth's surface, with important implications for society and the biosphere. This work shows for the first time that co-emission of plausible amounts of volcanic halogens can amplify the volcanic ERF in simulations of explosive eruptions. It highlights the need to include volcanic halogen emissions when simulating the climate impacts of past or future eruptions, as well as the necessity to maintain space-borne observations of stratospheric compounds to better constrain the stratospheric injection estimates of volcanic eruptions. © 2021 John Staunton-Sykes et al. © 2021 BMJ Publishing Group. All rights reserved. |
语种 | 英语 |
scopus关键词 | carbon dioxide; carbon emission; concentration (composition); halogen; radiative forcing; sulfur; volcanic aerosol; volcanic eruption; Central Luzon; Luzon; Mount Pinatubo; Philippines; Zambales |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/246813 |
作者单位 | Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Geography, University of Cambridge, Cambridge, United Kingdom; National Centre for Atmospheric Science, Leeds, United Kingdom; Sidney Sussex College, University of Cambridge, Cambridge, United Kingdom |
推荐引用方式 GB/T 7714 | Staunton-Sykes J.,Aubry T.J.,Shin Y.M.,et al. Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing[J],2021,21(11). |
APA | Staunton-Sykes J..,Aubry T.J..,Shin Y.M..,Weber J..,Marshall L.R..,...&Schmidt A..(2021).Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(11). |
MLA | Staunton-Sykes J.,et al."Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.11(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。