CCPortal
DOI10.5194/acp-21-10375-2021
Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity
Kuang Y.; Huang S.; Xue B.; Luo B.; Song Q.; Chen W.; Hu W.; Li W.; Zhao P.; Cai M.; Peng Y.; Qi J.; Li T.; Wang S.; Chen D.; Yue D.; Yuan B.; Shao M.
发表日期2021
ISSN1680-7316
起始页码10375
结束页码10391
卷号21期号:13
英文摘要Water uptake abilities of organic aerosol under sub-saturated conditions play critical roles in direct aerosol radiative effects and atmospheric chemistry; however, field characterizations of the organic aerosol hygroscopicity parameter κOA under sub-saturated conditions remain limited. In this study, a field campaign was conducted to characterize κOA at a relative humidity of 80 % with hourly time resolution for the first time in the Pearl River Delta region of China. Observation results show that, during this campaign, secondary organic aerosol (SOA) dominated total organic aerosol mass (mass fraction > 70 % on average), which provides a unique opportunity to investigate influences of SOA formation on κOA. Results demonstrate that the commonly used organic aerosol oxidation level parameter O/C was weakly correlated with κOA and failed to describe the variations in κOA. However, the variations in κOA were well reproduced by mass fractions of organic aerosol factor resolved based on aerosol mass spectrometer measurements. The more oxygenated organic aerosol (MOOA) factor, exhibiting the highest average O/C (1/4 1) among all organic aerosol factors, was the most important factor driving the increase in κOA and was commonly associated with regional air masses. The less oxygenated organic aerosol (LOOA; average O/C of 0.72) factor revealed strong daytime production, exerting negative effects on κOA. Surprisingly, the aged biomass burning organic aerosol (aBBOA) factor also formed quickly during daytime and shared a similar diurnal pattern with LOOA but had much lower O/C (0.39) and had positive effects on κOA. The correlation coefficient between κOA and mass fractions of aBBOA and MOOA in total organic aerosol mass reached above 0.8. The contrasting effects of LOOA and aBBOA formation on κOA demonstrate that volatile organic compound (VOC) precursors from diverse sources and different SOA formation processes may result in SOA with different chemical composition, functional properties and microphysical structure, consequently exerting distinct influences on κOA and rendering single oxidation level parameters (such as O/C) unable to capture those differences. Aside from that, distinct effects of aBBOA on κOA were observed during different episodes, suggesting that the hygroscopicity of SOA associated with similar sources might also differ much under different emission and atmospheric conditions. Overall, these results highlight that it is imperative to conduct more research on κOA characterization under different meteorological and source conditions and examine its relationship with VOC precursor profiles and formation pathways to formulate a better characterization and develop more appropriate parameterization approaches in chemical and climate models. © Copyright:
语种英语
scopus关键词aerosol formation; hygroscopicity; parameterization; relative humidity; temporal variation; volatile organic compound; China; Guangdong; Zhujiang Delta
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/246745
作者单位Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
推荐引用方式
GB/T 7714
Kuang Y.,Huang S.,Xue B.,et al. Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity[J],2021,21(13).
APA Kuang Y..,Huang S..,Xue B..,Luo B..,Song Q..,...&Shao M..(2021).Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(13).
MLA Kuang Y.,et al."Contrasting effects of secondary organic aerosol formations on organic aerosol hygroscopicity".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.13(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kuang Y.]的文章
[Huang S.]的文章
[Xue B.]的文章
百度学术
百度学术中相似的文章
[Kuang Y.]的文章
[Huang S.]的文章
[Xue B.]的文章
必应学术
必应学术中相似的文章
[Kuang Y.]的文章
[Huang S.]的文章
[Xue B.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。