CCPortal
DOI10.5194/acp-21-13149-2021
Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning
Wang C.
发表日期2021
ISSN1680-7316
起始页码13149
结束页码13166
卷号21期号:17
英文摘要Severe haze or low-visibility events caused by abundant atmospheric aerosols have become a serious environmental issue in many countries. A framework based on deep convolutional neural networks containing more than 20 million parameters called HazeNet has been developed to forecast the occurrence of such events in two Asian megacities: Beijing and Shanghai. Trained using time-sequential regional maps of up to 16 meteorological and hydrological variables alongside surface visibility data over the past 41 years, the machine has achieved a good overall performance in identifying haze versus non-haze events, and thus their respective favorable meteorological and hydrological conditions, with a validation accuracy of 80ĝ€¯% in both the Beijing and Shanghai cases, exceeding the frequency of non-haze events or no-skill forecasting accuracy, and an F1 score specifically for haze events of nearly 0.5. Its performance is clearly better during months with high haze frequency, i.e., all months except dusty April and May in Beijing and from late autumn through all of winter in Shanghai. Certain valuable knowledge has also obtained from the training, such as the sensitivity of the machine's performance to the spatial scale of feature patterns, that could benefit future applications using meteorological and hydrological data. Furthermore, an unsupervised cluster analysis using features with a greatly reduced dimensionality produced by the trained HazeNet has, arguably for the first time, successfully categorized typical regional meteorological-hydrological regimes alongside local quantities associated with haze and non-haze events in the two targeted cities, providing substantial insights to advance our understandings of this environmental extreme. Interesting similarities in associated weather and hydrological regimes between haze and false alarm clusters or differences between haze and missing forecasting clusters have also been revealed, implying that factors, such as energy-consumption variation and long-range aerosol transport, could also influence the occurrence of hazes, even under unfavorable weather conditions. © 2021 The Author(s).
语种英语
scopus关键词aerosol; artificial neural network; atmospheric transport; haze; hydrological modeling; machine learning; weather forecasting; Beijing [Beijing (ADS)]; Beijing [China]; China; Shanghai
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/246607
作者单位Laboratoire d'Aerologie, CNRS and University Toulouse III - Paul Sabatier, 14 Avenue Edouard Belin, Toulouse, 31400, France
推荐引用方式
GB/T 7714
Wang C.. Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning[J],2021,21(17).
APA Wang C..(2021).Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(17).
MLA Wang C.."Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.17(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang C.]的文章
百度学术
百度学术中相似的文章
[Wang C.]的文章
必应学术
必应学术中相似的文章
[Wang C.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。