Climate Change Data Portal
DOI | 10.5194/acp-21-15519-2021 |
Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory-overview and long-term comparison to other techniques | |
García O.E.; Schneider M.; Sepúlveda E.; Hase F.; Blumenstock T.; Cuevas E.; Ramos R.; Gross J.; Barthlott S.; Röhling A.N.; Sanromá E.; González Y.; Gómez-Peláez A.J.; Navarro-Comas M.; Puentedura O.; Yela M.; Redondas A.; Carreño V.; León-Luis S.F.; Reyes E.; García R.D.; Rivas P.P.; Romero-Campos P.M.; Torres C.; Prats N.; Hernández M.; López C. | |
发表日期 | 2021 |
ISSN | 1680-7316 |
起始页码 | 15519 |
结束页码 | 15554 |
卷号 | 21期号:20 |
英文摘要 | High-resolution Fourier transform infrared (FTIR) solar observations are particularly relevant for climate studies, as they allow atmospheric gaseous composition and multiple climate processes to be monitored in detail. In this context, the present paper provides an overview of 20 years of FTIR measurements taken in the framework of the NDACC (Network for the Detection of Atmospheric Composition Change) from 1999 to 2018 at the subtropical Izaña Observatory (IZO, Spain). Firstly, long-term instrumental performance is comprehensively assessed, corroborating the temporal stability and reliable instrumental characterization of the two FTIR spectrometers installed at IZO since 1999. Then, the time series of all trace gases contributing to NDACC at IZO are presented (i.e. C2H6, CH4, ClONO2, CO, HCl, HCN, H2CO, HF, HNO3, N2O, NO2, NO, O3, carbonyl sulfide (OCS), and water vapour isotopologues H216O, H218O, and HD16O), reviewing the major accomplishments drawn from these observations. In order to examine the quality and long-term consistency of the IZO FTIR observations, a comparison of those NDACC products for which other high-quality measurement techniques are available at IZO has been performed (i.e. CH4, CO, H2O, NO2, N2O, and O3). This quality assessment was carried out on different timescales to examine what temporal signals are captured by the FTIR records, and to what extent. After 20 years of operation, the IZO NDACC FTIR observations have been found to be very consistent and reliable over time, demonstrating great potential for climate research. Long-term NDACC FTIR data sets, such as IZO, are indispensable tools for the investigation of atmospheric composition trends, multi-year phenomena, and complex climate feedback processes, as well as for the validation of past and present space-based missions and chemistry climate models. © 2021 Omaira E. García et al. |
语种 | 英语 |
scopus关键词 | atmospheric chemistry; carbonyl compound; climate feedback; climate modeling; FTIR spectroscopy; time series; water vapor |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/246493 |
作者单位 | Izaña Atmospheric Research Centre (IARC), State Meteorological Agency of Spain (AEMet), Santa Cruz de Tenerife, Spain; Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany; Cimel Electronique, Paris, France; Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology (INTA), Madrid, Spain; Group of Atmospheric Optic, University of Valladolid, Valladolid, Spain; Canarias Delegation, State Meteorological Agency of Spain (AEMet), Santa Cruz de Tenerife, Spain; Sieltec Canarias S.L., La Laguna, Spain; Employment Observatory of the Canary Islands (OBECAN), Santa Cruz de Tenerife, Spain; Asturias Delegation, State Meteorological Agency of Spain (AEMet), Oviedo, Spain; Tragsatec, Madrid, Spain |
推荐引用方式 GB/T 7714 | García O.E.,Schneider M.,Sepúlveda E.,et al. Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory-overview and long-term comparison to other techniques[J],2021,21(20). |
APA | García O.E..,Schneider M..,Sepúlveda E..,Hase F..,Blumenstock T..,...&López C..(2021).Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory-overview and long-term comparison to other techniques.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(20). |
MLA | García O.E.,et al."Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory-overview and long-term comparison to other techniques".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.20(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。