CCPortal
DOI10.5194/acp-21-16121-2021
Aerosol responses to precipitation along North American air trajectories arriving at Bermuda
Dadashazar H.; Alipanah M.; Hilario M.R.A.; Crosbie E.; Kirschler S.; Liu H.; Moore R.H.; Peters A.J.; Scarino A.J.; Shook M.; Thornhill K.L.; Voigt C.; Wang H.; Winstead E.; Zhang B.; Ziemba L.; Sorooshian A.
发表日期2021
ISSN1680-7316
起始页码16121
结束页码16141
卷号21期号:21
英文摘要North American pollution outflow is ubiquitous over the western North Atlantic Ocean, especially in winter, making this location a suitable natural laboratory for investigating the impact of precipitation on aerosol particles along air mass trajectories. We take advantage of observational data collected at Bermuda to seasonally assess the sensitivity of aerosol mass concentrations and volume size distributions to accumulated precipitation along trajectories (APT). The mass concentration of particulate matter with aerodynamic diameter less than 2.5 μm normalized by the enhancement of carbon monoxide above background (PM2.5/δCO) at Bermuda was used to estimate the degree of aerosol loss during transport to Bermuda. Results for December-February (DJF) show that most trajectories come from North America and have the highest APTs, resulting in a significant reduction (by 53 %) in PM2.5/δCO under high-APT conditions (> 13.5 mm) relative to low-APT conditions (< 0.9 mm). Moreover, PM2.5/δCO was most sensitive to increases in APT up to 5 mm (-0.044 μg m-3 ppbv-1 mm-1) and less sensitive to increases in APT over 5 mm. While anthropogenic PM2.5 constituents (e.g., black carbon, sulfate, organic carbon) decrease with high APT, sea salt, in contrast, was comparable between high- and low-APT conditions owing to enhanced local wind and sea salt emissions in high-APT conditions. The greater sensitivity of the fine-mode volume concentrations (versus coarse mode) to wet scavenging is evident from AErosol RObotic NETwork (AERONET) volume size distribution data. A combination of GEOS-Chem model simulations of the 210Pb submicron aerosol tracer and its gaseous precursor 222Rn reveals that (i) surface aerosol particles at Bermuda are most impacted by wet scavenging in winter and spring (due to large-scale precipitation) with a maximum in March, whereas convective scavenging plays a substantial role in summer; and (ii) North American 222Rn tracer emissions contribute most to surface 210Pb concentrations at Bermuda in winter (ĝ1/4 75 %-80 %), indicating that air masses arriving at Bermuda experience large-scale precipitation scavenging while traveling from North America. A case study flight from the ACTIVATE field campaign on 22 February 2020 reveals a significant reduction in aerosol number and volume concentrations during air mass transport off the US East Coast associated with increased cloud fraction and precipitation. These results highlight the sensitivity of remote marine boundary layer aerosol characteristics to precipitation along trajectories, especially when the air mass source is continental outflow from polluted regions like the US East Coast. © Author(s) 2021.
语种英语
scopus关键词aerosol; carbon monoxide; concentration (composition); particulate matter; precipitation (climatology); size distribution; trajectory; Bermuda; North America
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/246467
作者单位Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, United States; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, United States; NASA Langley Research Center, Hampton, VA, United States; Science Systems and Applications, Inc., Hampton, VA, United States; Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany; Institute for Atmospheric Physics, University of Mainz, Mainz, Germany; National Institute of Aerospace, Hampton, VA, United States; Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda; Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, United States
推荐引用方式
GB/T 7714
Dadashazar H.,Alipanah M.,Hilario M.R.A.,et al. Aerosol responses to precipitation along North American air trajectories arriving at Bermuda[J],2021,21(21).
APA Dadashazar H..,Alipanah M..,Hilario M.R.A..,Crosbie E..,Kirschler S..,...&Sorooshian A..(2021).Aerosol responses to precipitation along North American air trajectories arriving at Bermuda.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(21).
MLA Dadashazar H.,et al."Aerosol responses to precipitation along North American air trajectories arriving at Bermuda".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.21(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dadashazar H.]的文章
[Alipanah M.]的文章
[Hilario M.R.A.]的文章
百度学术
百度学术中相似的文章
[Dadashazar H.]的文章
[Alipanah M.]的文章
[Hilario M.R.A.]的文章
必应学术
必应学术中相似的文章
[Dadashazar H.]的文章
[Alipanah M.]的文章
[Hilario M.R.A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。