CCPortal
DOI10.1126/science.abh0635
Estimating epidemiologic dynamics from cross-sectional viral load distributions
Hay J.A.; Kennedy-Shaffer L.; Kanjilal S.; Lennon N.J.; Gabriel S.B.; Lipsitch M.; Mina M.J.
发表日期2021
ISSN0036-8075
卷号373期号:6552
英文摘要Estimating an epidemic’s trajectory is crucial for developing public health responses to infectious diseases, but case data used for such estimation are confounded by variable testing practices. We show that the population distribution of viral loads observed under random or symptom-based surveillance—in the form of cycle threshold (Ct) values obtained from reverse transcription quantitative polymerase chain reaction testing—changes during an epidemic. Thus, Ct values from even limited numbers of random samples can provide improved estimates of an epidemic’s trajectory. Combining data from multiple such samples improves the precision and robustness of this estimation. We apply our methods to Ct values from surveillance conducted during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in a variety of settings and offer alternative approaches for real-time estimates of epidemic trajectories for outbreak management and response. © 2021 American Association for the Advancement of Science. All rights reserved.
英文关键词COVID-19; epidemic; polymerase chain reaction; public health; severe acute respiratory syndrome; trajectory; Article; cohort analysis; coronavirus disease 2019; cycle threshold value; disease course; disease surveillance; health care management; human; human tissue; incidence; mathematical model; pandemic; population distribution; real time reverse transcription polymerase chain reaction; Severe acute respiratory syndrome coronavirus 2; virus load; cross-sectional study; diagnosis; epidemiological monitoring; epidemiology; incidence; physiology; theoretical model; virology; SARS coronavirus; COVID-19; COVID-19 Nucleic Acid Testing; Cross-Sectional Studies; Epidemiological Monitoring; Humans; Incidence; Models, Theoretical; Pandemics; SARS-CoV-2; Viral Load
语种英语
来源期刊Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/243977
作者单位Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Mathematics and Statistics, Vassar College, Poughkeepsie, NY, United States; Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, United States; Department of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
推荐引用方式
GB/T 7714
Hay J.A.,Kennedy-Shaffer L.,Kanjilal S.,et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions[J],2021,373(6552).
APA Hay J.A..,Kennedy-Shaffer L..,Kanjilal S..,Lennon N.J..,Gabriel S.B..,...&Mina M.J..(2021).Estimating epidemiologic dynamics from cross-sectional viral load distributions.Science,373(6552).
MLA Hay J.A.,et al."Estimating epidemiologic dynamics from cross-sectional viral load distributions".Science 373.6552(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hay J.A.]的文章
[Kennedy-Shaffer L.]的文章
[Kanjilal S.]的文章
百度学术
百度学术中相似的文章
[Hay J.A.]的文章
[Kennedy-Shaffer L.]的文章
[Kanjilal S.]的文章
必应学术
必应学术中相似的文章
[Hay J.A.]的文章
[Kennedy-Shaffer L.]的文章
[Kanjilal S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。