Climate Change Data Portal
DOI | 10.1126/science.aan8461 |
Substantial convection and precipitation enhancements by ultrafine aerosol particles | |
Fan J.; Rosenfeld D.; Zhang Y.; Giangrande S.E.; Li Z.; Machado L.A.T.; Martin S.T.; Yang Y.; Wang J.; Artaxo P.; Barbosa H.M.J.; Braga R.C.; Comstock J.M.; Feng Z.; Gao W.; Gomes H.B.; Mei F.; Pöhlker C.; Pöhlker M.L.; Pöschl U.; De Souza R.A.F. | |
发表日期 | 2018 |
ISSN | 0036-8075 |
起始页码 | 411 |
结束页码 | 418 |
卷号 | 359期号:6374 |
英文摘要 | Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP<50) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP<50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world. © 2017 The Authors. |
英文关键词 | rain; aerosol; cloud droplet; cloud water; coalescence; condensation; convection; convective cloud; heating; particle size; precipitation (climatology); supersaturation; aerosol; air pollution; Article; atmospheric radiation measurement; cloud condensation nuclei; convective available potential energy; convective inhibition; deep convection cloud; droplet freezing; environmental parameters; freezing; heating; humidity; mathematical analysis; parameters; plume; polymerization; precipitation; priority journal; radiation measurement; sensitivity analysis; simulation; supersaturation; thermodynamics; ultrafine aerosol particle; vapor; Amazon River |
语种 | 英语 |
来源期刊 | Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/243657 |
作者单位 | Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Department of Atmospheric and Oceanic Science, ESSIC, University of Maryland, College Park, MD 20742, United States; Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, United States; State Laboratory of Earth Surface Process and Resource Ecology, GCESS, Beijing Normal University, Beijing, China; Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brazil; School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Harvard University, Boston, MA, United States; Beijing Municipal Weather Modification Office, Beijing, 100089, China; Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, São Paulo, 05508-090, Brazil; Department of Physics, University of Maryland Ba... |
推荐引用方式 GB/T 7714 | Fan J.,Rosenfeld D.,Zhang Y.,et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles[J],2018,359(6374). |
APA | Fan J..,Rosenfeld D..,Zhang Y..,Giangrande S.E..,Li Z..,...&De Souza R.A.F..(2018).Substantial convection and precipitation enhancements by ultrafine aerosol particles.Science,359(6374). |
MLA | Fan J.,et al."Substantial convection and precipitation enhancements by ultrafine aerosol particles".Science 359.6374(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。