CCPortal
DOI10.1126/science.abb9789
Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions
Dehning J.; Zierenberg J.; Spitzner F.P.; Wibral M.; Neto J.P.; Wilczek M.; Priesemann V.
发表日期2020
ISSN0036-8075
卷号369期号:6500
英文摘要As coronavirus disease 2019 (COVID-19) is rapidly spreading across the globe, short-term modeling forecasts provide time-critical information for decisions on containment and mitigation strategies. A major challenge for short-term forecasts is the assessment of key epidemiological parameters and how they change when first interventions show an effect. By combining an established epidemiological model with Bayesian inference, we analyzed the time dependence of the effective growth rate of new infections. Focusing on COVID-19 spread in Germany, we detected change points in the effective growth rate that correlate well with the times of publicly announced interventions. Thereby, we could quantify the effect of interventions and incorporate the corresponding change points into forecasts of future scenarios and case numbers. Our code is freely available and can be readily adapted to any country or region. © 2020 American Association for the Advancement of Science. All rights reserved.
英文关键词disease spread; epidemiology; growth rate; infectious disease; viral disease; virus; Article; coronavirus disease 2019; epidemic; geographic distribution; human; illness trajectory; incidence; infection control; infection rate; intervention study; priority journal; virus transmission; Bayes theorem; Coronavirus infection; forecasting; Germany; pandemic; social distance; virus pneumonia; Germany; Coronavirus; Bayes Theorem; Coronavirus Infections; Forecasting; Germany; Humans; Pandemics; Pneumonia, Viral; Social Distance
语种英语
来源期刊Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/243502
作者单位Max Planck Institute for Dynamics and Self-Organization, Göttingen, 37077, Germany; Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, 37075, Germany; Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, 37077, Germany; Bernstein Center for Computational Neuroscience, Göttingen, 37075, Germany
推荐引用方式
GB/T 7714
Dehning J.,Zierenberg J.,Spitzner F.P.,et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions[J],2020,369(6500).
APA Dehning J..,Zierenberg J..,Spitzner F.P..,Wibral M..,Neto J.P..,...&Priesemann V..(2020).Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions.Science,369(6500).
MLA Dehning J.,et al."Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions".Science 369.6500(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dehning J.]的文章
[Zierenberg J.]的文章
[Spitzner F.P.]的文章
百度学术
百度学术中相似的文章
[Dehning J.]的文章
[Zierenberg J.]的文章
[Spitzner F.P.]的文章
必应学术
必应学术中相似的文章
[Dehning J.]的文章
[Zierenberg J.]的文章
[Spitzner F.P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。