Climate Change Data Portal
DOI | 10.1126/science.aar2687 |
Two-billion-year-old evaporites capture Earth's great oxidation | |
Blättler C.L.; Claire M.W.; Prave A.R.; Kirsimäe K.; Higgins J.A.; Medvedev P.V.; Romashkin A.E.; Rychanchik D.V.; Zerkle A.L.; Paiste K.; Kreitsmann T.; Millar I.L.; Hayles J.A.; Bao H.; Turchyn A.V.; Warke M.R.; Lepland A. | |
发表日期 | 2018 |
ISSN | 0036-8075 |
起始页码 | 320 |
结束页码 | 323 |
卷号 | 360期号:6386 |
英文摘要 | Major changes in atmospheric and ocean chemistry occurred in the Paleoproterozoic era (2.5 to 1.6 billion years ago). Increasing oxidation dramatically changed Earth's surface, but few quantitative constraints exist on this important transition. This study describes the sedimentology, mineralogy, and geochemistry of a 2-billion-year-old, ∼800-meterthick evaporite succession from the Onega Basin in Russian Karelia. The deposit consists of a basal unit dominated by halite (∼100 meters) followed by units dominated by anhydrite-magnesite (∼500 meters) and dolomite-magnesite (∼200 meters). The evaporite minerals robustly constrain marine sulfate concentrations to at least 10 millimoles per kilogram of water, representing an oxidant reservoir equivalent to more than 20% of the modern ocean-atmosphere oxidizing capacity. These results show that substantial amounts of surface oxidant accumulated during this critical transition in Earth's oxygenation. © 2017 The Authors, some rights reserved. |
英文关键词 | calcium; calcium sulfate; magnesium; potassium sulfate; sea water; water; anhydrite; atmospheric chemistry; concentration (composition); dolomite; evaporite; magnesite; oxidant; oxidation; oxygenation; Proterozoic; water chemistry; Article; bioaccumulation; concentration (parameters); controlled study; evaporation; evaporite; geochemistry; mineralogy; oxidation; oxygenation; Paleoproterozoic; precipitation; priority journal; quantitative study; Russian Federation; sediment; sedimentology; simulation; Arkhangelsk [Russian Federation]; Karelia [(ADS) Russian Federation]; Onega Basin; Russian Federation |
语种 | 英语 |
来源期刊 | Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/243059 |
作者单位 | Department of Geosciences, Princeton University, Princeton, NJ 08544, United States; School of Earth and Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, United Kingdom; Centre for Exoplanet Science, University of St Andrews, St Andrews, KY16 9AL, United Kingdom; Blue Marble Space Institute of Science, 1001 4th Avenue, Seattle, WA 98154, United States; Department of Geology, University of Tartu, Tartu, 50411, Estonia; Institute of Geology, Karelian Research Centre, Pushkinskaya 11, Petrozavodsk, 185610, Russian Federation; Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, 9037, Norway; NERC (Natural Environment Research Council), Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom; Department of Earth Science, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Geology and Geophysics, E235 Howe-Russell Geoscience Comple... |
推荐引用方式 GB/T 7714 | Blättler C.L.,Claire M.W.,Prave A.R.,et al. Two-billion-year-old evaporites capture Earth's great oxidation[J],2018,360(6386). |
APA | Blättler C.L..,Claire M.W..,Prave A.R..,Kirsimäe K..,Higgins J.A..,...&Lepland A..(2018).Two-billion-year-old evaporites capture Earth's great oxidation.Science,360(6386). |
MLA | Blättler C.L.,et al."Two-billion-year-old evaporites capture Earth's great oxidation".Science 360.6386(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。