Climate Change Data Portal
DOI | 10.1016/j.scitotenv.2017.09.083 |
Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China | |
Luo, Dongliang; Jin, Huijun; Wu, Qingbai![]() | |
发表日期 | 2018 |
ISSN | 0048-9697 |
EISSN | 1879-1026 |
起始页码 | 1033 |
结束页码 | 1045 |
卷号 | 618 |
英文摘要 | Ecology, hydrology, and natural resources in the source areas of the Yangtze and Yellowrivers (SAYYR) are closely linked to interactions between climate and permafrost. However, a comprehensive study of the interactions is currently hampered by sparsely-and unevenly-distributed monitoring sites and limited field investigations. In this study, the thermal regime of warm-dry permafrost in the SAYYR was systematically analyzed based on extensive data collected during 2010-2016 of air temperature (T-a), ground surface temperature (GST) and ground temperature across a range of areas with contrasting land-surface characteristics. Mean annual T-a (MAAT) and mean annual GST (MAGST) were regionally averaged at -3.19 +/- 0.71 degrees C and -0.40 +/- 1.26 degrees C. There is a close relationship between GST and T-a (R-2= 0.8477) as obtained by a linear regression analysis with all available daily averages. The mean annual temperature at the bottom of the active layer (T-TOP) was regionally averaged at -0.72 +/- 1.01 degrees C and mostly in the range of -1.0 degrees C and 0 degrees C except at Chalaping (similar to-2.0 degrees C). Surface offset (MAGST-MAAT) was regionally averaged at 2.54 +/- 0.71 degrees C. Thermal offset (TTOP-MAGST) was regionally averaged at -0.17 +/- 0.84 degrees C, which was generally within-0.5 degrees C and 0.5 degrees C. Relatively consistent thermal conductivity between the thawed and frozen states of the soils may be responsible for the small thermal offset. Active layer thickness was generally smaller at Chalaping than that on other parts of the QTP, presumably due to smaller climatic continentality index and the thermal dampening of surface temperature variability under the presence of dense vegetation and thick peaty substrates. We conclude that the accurate mapping of permafrost on the rugged elevational QTP could be potentially obtained by correlating the parameters of GST, thermal offset, and temperature gradient in the shallow permafrost. (c) 2017 Elsevier B.V. All rights reserved. |
英文关键词 | Warm-dry permafrost; Permafrost-climate relationship; Ground surface temperature; The source areas of the Yangtze and Yellow rivers (SAYYR); Qinghai-Tibet Plateau (QTP) |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology |
WOS类目 | Environmental Sciences |
WOS关键词 | ACTIVE-LAYER THICKNESS ; HIGH-ALTITUDE PERMAFROST ; MOUNTAIN PERMAFROST ; CLIMATE-CHANGE ; N-FACTOR ; BASIN ; VARIABILITY ; VEGETATION ; STATE |
WOS记录号 | WOS:000424130500107 |
来源期刊 | SCIENCE OF THE TOTAL ENVIRONMENT
![]() |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/240271 |
作者单位 | [Luo, Dongliang; Jin, Huijun; Wu, Qingbai; Bense, Victor F.; He, Ruixia; Ma, Qiang; Gao, Shuhui; Jin, Xiaoying; Lu, Lanzhi] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Gansu, Peoples R China; [Jin, Huijun] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Heilongjiang, Peoples R China; [Bense, Victor F.] Wageningen Univ, Hydrol & Quantitat Water Management Grp, Dept Environm Sci, Wageningen, Netherlands |
推荐引用方式 GB/T 7714 | Luo, Dongliang,Jin, Huijun,Wu, Qingbai,et al. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China[J]. 中国科学院西北生态环境资源研究院,2018,618. |
APA | Luo, Dongliang.,Jin, Huijun.,Wu, Qingbai.,Bense, Victor F..,He, Ruixia.,...&Lu, Lanzhi.(2018).Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China.SCIENCE OF THE TOTAL ENVIRONMENT,618. |
MLA | Luo, Dongliang,et al."Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China".SCIENCE OF THE TOTAL ENVIRONMENT 618(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。