Climate Change Data Portal
DOI | 10.1007/s00477-021-02078-x |
Hybrid deep learning method for a week-ahead evapotranspiration forecasting | |
Ahmed, A. A. Masrur; Deo, Ravinesh C.; Feng, Qi; Ghahramani, Afshin; Raj, Nawin; Yin, Zhenliang; Yang, Linshan | |
发表日期 | 2021 |
ISSN | 1436-3240 |
EISSN | 1436-3259 |
英文摘要 | Reference crop evapotranspiration (ETo) is an integral hydrological factor in soil-plant-atmospheric water balance studies and the management of drought events. This paper proposes a new hybrid-deep learning approach, combining convolutional neural network (CNN) and gated recurrent unit (GRU) along with Ant Colony Optimization (ACO), for a multi-step (week 1 to 4) daily-ETo forecast. The method also assimilates a comprehensive dataset with 52 diverse predictors, i.e., satellite-derived moderate resolution imaging spectroradiometer, ground-based datasets from scientific information for landowners and synoptic-scale climate indices. To develop a vigorous CNN-GRU model, a feature selection stage entails the ant colony optimization method implemented to improve the ETo forecast model for the three selected sites in Australian Murray Darling Basin. The results demonstrate excellent forecasting capability of the hybrid CNN-GRU model against the counterpart benchmark models, evidenced by a relatively small mean absolute error and high efficiency. Overall, this study shows that the proposed hybrid CNN-GRU model successfully apprehends the complex and non-linear relationships between predictor variables and the daily ETo. |
英文关键词 | Convolutional neural network; Gated recurrent unit; Hybrid-deep learning; ETo forecasting |
WOS研究方向 | Engineering ; Environmental Sciences & Ecology ; Mathematics ; Water Resources |
WOS类目 | Engineering, Environmental ; Engineering, Civil ; Environmental Sciences ; Statistics & Probability ; Water Resources |
WOS关键词 | ARTIFICIAL NEURAL-NETWORK ; EMPIRICAL MODE DECOMPOSITION ; SHORT-TERM-MEMORY ; CLIMATE INDEXES ; SYNOPTIC-SCALE ; PREDICTION ; ALGORITHM ; MACHINE ; PRECIPITATION ; OPTIMIZATION |
WOS记录号 | WOS:000693487400001 |
来源期刊 | STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/239430 |
作者单位 | [Ahmed, A. A. Masrur; Deo, Ravinesh C.; Raj, Nawin] Univ Southern Queensland, Sch Sci, Springfield, Qld 4300, Australia; [Feng, Qi; Yin, Zhenliang; Yang, Linshan] Chinese Acad Sci, Key Lab Ecohydrol Inland River Basin, Beijing, Peoples R China; [Feng, Qi; Yin, Zhenliang; Yang, Linshan] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Donggang West Rd 320, Lanzhou 730000, Gansu, Peoples R China; [Ghahramani, Afshin] Univ Southern Queensland, Ctr Sustainable Agr Syst, Springfield, Qld 4500, Australia |
推荐引用方式 GB/T 7714 | Ahmed, A. A. Masrur,Deo, Ravinesh C.,Feng, Qi,et al. Hybrid deep learning method for a week-ahead evapotranspiration forecasting[J]. 中国科学院西北生态环境资源研究院,2021. |
APA | Ahmed, A. A. Masrur.,Deo, Ravinesh C..,Feng, Qi.,Ghahramani, Afshin.,Raj, Nawin.,...&Yang, Linshan.(2021).Hybrid deep learning method for a week-ahead evapotranspiration forecasting.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT. |
MLA | Ahmed, A. A. Masrur,et al."Hybrid deep learning method for a week-ahead evapotranspiration forecasting".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。