Climate Change Data Portal
DOI | 10.1073/pnas.2026130118 |
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds | |
Rouse A.A.; Patel A.D.; Kao M.H. | |
发表日期 | 2021 |
ISSN | 0027-8424 |
卷号 | 118期号:29 |
英文摘要 | Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders. © 2021 National Academy of Sciences. All rights reserved. |
英文关键词 | Songbird | isochrony | comparative cognition | auditory perception | finch |
语种 | 英语 |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/238859 |
作者单位 | Department of Psychology, Tufts University, Medford, MA 02155, United States; Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada; Department of Biology, Tufts University, Medford, MA 02155, United States; Neuroscience Graduate Program, Tufts University, Boston, MA 02111, United States |
推荐引用方式 GB/T 7714 | Rouse A.A.,Patel A.D.,Kao M.H.. Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds[J],2021,118(29). |
APA | Rouse A.A.,Patel A.D.,&Kao M.H..(2021).Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds.Proceedings of the National Academy of Sciences of the United States of America,118(29). |
MLA | Rouse A.A.,et al."Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds".Proceedings of the National Academy of Sciences of the United States of America 118.29(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。