CCPortal
DOI10.1073/pnas.2105646118
The neural architecture of language: Integrative modeling converges on predictive processing
Schrimpf M.; Blank I.A.; Tuckute G.; Kauf C.; Hosseini E.A.; Kanwisher N.; Tenenbaum J.B.; Fedorenko E.
发表日期2021
ISSN0027-8424
卷号118期号:45
英文摘要The neuroscience of perception has recently been revolutionized with an integrative modeling approach in which computation, brain function, and behavior are linked across many datasets and many computational models. By revealing trends across models, this approach yields novel insights into cognitive and neural mechanisms in the target domain. We here present a systematic study taking this approach to higher-level cognition: Human language processing, our species' signature cognitive skill. We find that the most powerful "transformer" models predict nearly 100% of explainable variance in neural responses to sentences and generalize across different datasets and imaging modalities (functional MRI and electrocorticography). Models' neural fits ("brain score") and fits to behavioral responses are both strongly correlated with model accuracy on the next-word prediction task (but not other language tasks). Model architecture appears to substantially contribute to neural fit. These results provide computationally explicit evidence that predictive processing fundamentally shapes the language comprehension mechanisms in the human brain. © 2021 National Academy of Sciences. All rights reserved.
英文关键词Artificial neural networks; Computational neuroscience; Deep learning; Language comprehension; Neural recordings (fMRI and ECoG)
语种英语
scopus关键词article; artificial neural network; brain; comprehension; deep learning; electrocorticography; functional magnetic resonance imaging; human; human experiment; language processing; language test; nerve potential; neuroscience; prediction; skill
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/238762
作者单位Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Psychology, University of California, Los Angeles, CA 90095, United States
推荐引用方式
GB/T 7714
Schrimpf M.,Blank I.A.,Tuckute G.,et al. The neural architecture of language: Integrative modeling converges on predictive processing[J],2021,118(45).
APA Schrimpf M..,Blank I.A..,Tuckute G..,Kauf C..,Hosseini E.A..,...&Fedorenko E..(2021).The neural architecture of language: Integrative modeling converges on predictive processing.Proceedings of the National Academy of Sciences of the United States of America,118(45).
MLA Schrimpf M.,et al."The neural architecture of language: Integrative modeling converges on predictive processing".Proceedings of the National Academy of Sciences of the United States of America 118.45(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Schrimpf M.]的文章
[Blank I.A.]的文章
[Tuckute G.]的文章
百度学术
百度学术中相似的文章
[Schrimpf M.]的文章
[Blank I.A.]的文章
[Tuckute G.]的文章
必应学术
必应学术中相似的文章
[Schrimpf M.]的文章
[Blank I.A.]的文章
[Tuckute G.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。