Climate Change Data Portal
DOI | 10.1073/pnas.2025400118 |
Monitoring war destruction from space using machine learning | |
Mueller H.; Groeger A.; Hersh J.; Matranga A.; Serrat J. | |
发表日期 | 2021 |
ISSN | 0027-8424 |
卷号 | 118期号:23 |
英文摘要 | Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency-and makes use of the ever-higher frequency at which satellite imagery becomes available. © 2021 National Academy of Sciences. All rights reserved. |
英文关键词 | Conflict; Deep learning; Destruction; Remote sensing; Syria |
语种 | 英语 |
scopus关键词 | article; city; deep learning; destruction; human; human experiment; human rights; humanitarian aid; proof of concept; satellite imagery; Syrian Arab Republic; witness |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/238715 |
作者单位 | Institute of Economic Analysis, Spanish National Research Council (CSIC), Bellaterra, 08193, Spain; Barcelona Graduate School of Economics, Barcelona, 08005, Spain; Department of Economics and Economic History, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Argyros School of Business, Chapman University, Orange, CA 92868, United States; Smith Institute for Political Economy and Philosophy, Chapman University, Orange, CA 92868, United States; Computer Science Department, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Computer Vision Center, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain |
推荐引用方式 GB/T 7714 | Mueller H.,Groeger A.,Hersh J.,et al. Monitoring war destruction from space using machine learning[J],2021,118(23). |
APA | Mueller H.,Groeger A.,Hersh J.,Matranga A.,&Serrat J..(2021).Monitoring war destruction from space using machine learning.Proceedings of the National Academy of Sciences of the United States of America,118(23). |
MLA | Mueller H.,et al."Monitoring war destruction from space using machine learning".Proceedings of the National Academy of Sciences of the United States of America 118.23(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。