CCPortal
DOI10.1073/pnas.2025400118
Monitoring war destruction from space using machine learning
Mueller H.; Groeger A.; Hersh J.; Matranga A.; Serrat J.
发表日期2021
ISSN0027-8424
卷号118期号:23
英文摘要Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency-and makes use of the ever-higher frequency at which satellite imagery becomes available. © 2021 National Academy of Sciences. All rights reserved.
英文关键词Conflict; Deep learning; Destruction; Remote sensing; Syria
语种英语
scopus关键词article; city; deep learning; destruction; human; human experiment; human rights; humanitarian aid; proof of concept; satellite imagery; Syrian Arab Republic; witness
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/238715
作者单位Institute of Economic Analysis, Spanish National Research Council (CSIC), Bellaterra, 08193, Spain; Barcelona Graduate School of Economics, Barcelona, 08005, Spain; Department of Economics and Economic History, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Argyros School of Business, Chapman University, Orange, CA 92868, United States; Smith Institute for Political Economy and Philosophy, Chapman University, Orange, CA 92868, United States; Computer Science Department, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Computer Vision Center, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
推荐引用方式
GB/T 7714
Mueller H.,Groeger A.,Hersh J.,et al. Monitoring war destruction from space using machine learning[J],2021,118(23).
APA Mueller H.,Groeger A.,Hersh J.,Matranga A.,&Serrat J..(2021).Monitoring war destruction from space using machine learning.Proceedings of the National Academy of Sciences of the United States of America,118(23).
MLA Mueller H.,et al."Monitoring war destruction from space using machine learning".Proceedings of the National Academy of Sciences of the United States of America 118.23(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mueller H.]的文章
[Groeger A.]的文章
[Hersh J.]的文章
百度学术
百度学术中相似的文章
[Mueller H.]的文章
[Groeger A.]的文章
[Hersh J.]的文章
必应学术
必应学术中相似的文章
[Mueller H.]的文章
[Groeger A.]的文章
[Hersh J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。