CCPortal
DOI10.1073/pnas.2025562118
Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures
Beck V.A.; Ivanovskaya A.N.; Chandrasekaran S.; Forien J.-B.; Baker S.E.; Duoss E.B.; Worsley M.A.
发表日期2021
ISSN0027-8424
卷号118期号:32
英文摘要Electrochemical reactors utilizing flow-through electrodes (FTEs) provide an attractive path toward the efficient utilization of electrical energy, but their commercial viability and ultimate adoption hinge on attaining high currents to drive productivity and cost competitiveness. Conventional FTEs composed of random, porous media provide limited opportunity for architectural control and engineering of microscale transport. Alternatively, the design freedom engendered by additively manufacturing FTEs yields additional opportunities to further drive performance via flow engineering. Through experiment and validated continuum computation we analyze the mass transfer in three-dimensional (3D)-printed porous FTEs with periodic lattice structures and show that, in contrast to conventional electrodes, the mesoscopic length scales in 3D-printed electrodes lead to an increase in the mass correlation exponent as inertial flow effects dominate. The inertially enhanced mass transport yields mass transfer coefficients that exceed previously reported 3D-printed FTEs by 10 to 100 times, bringing 3D-printed FTE performance on par with conventional materials. © 2021 National Academy of Sciences. All rights reserved.
英文关键词3D printing; Computational fluid dynamics; Flow-through electrodes; Mass transfer coefficients; Rapid prototyping
语种英语
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/238444
作者单位Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; Center for Engineered Materials and Manufacturing, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
推荐引用方式
GB/T 7714
Beck V.A.,Ivanovskaya A.N.,Chandrasekaran S.,et al. Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures[J],2021,118(32).
APA Beck V.A..,Ivanovskaya A.N..,Chandrasekaran S..,Forien J.-B..,Baker S.E..,...&Worsley M.A..(2021).Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures.Proceedings of the National Academy of Sciences of the United States of America,118(32).
MLA Beck V.A.,et al."Inertially enhanced mass transport using 3D-printed porous flow-through electrodes with periodic lattice structures".Proceedings of the National Academy of Sciences of the United States of America 118.32(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Beck V.A.]的文章
[Ivanovskaya A.N.]的文章
[Chandrasekaran S.]的文章
百度学术
百度学术中相似的文章
[Beck V.A.]的文章
[Ivanovskaya A.N.]的文章
[Chandrasekaran S.]的文章
必应学术
必应学术中相似的文章
[Beck V.A.]的文章
[Ivanovskaya A.N.]的文章
[Chandrasekaran S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。