Climate Change Data Portal
DOI | 10.1073/pnas.2108617118 |
Moving Dirac nodes by chemical substitution | |
Nilforoushan N.; Casula M.; Amaricci A.; Caputo M.; Caillaux J.; Khalil L.; Papalazarou E.; Simon P.; Perfetti L.; Vobornik I.; Das P.K.; Fujii J.; Barinov A.; Santos-Cottin D.; Klein Y.; Fabrizio M.; Gauzzi A.; Marsi M. | |
发表日期 | 2021 |
ISSN | 0027-8424 |
卷号 | 118期号:33 |
英文摘要 | Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, BaNiS2, through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of BaCo1−xNixS2 across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the Γ − M symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making BaCo1−xNixS2 a model system to functionalize Dirac materials by varying the strength of electron correlations. © 2021 National Academy of Sciences. All rights reserved. |
英文关键词 | Correlated electronic systems; Dirac semi-metals; Functional topological materials |
语种 | 英语 |
scopus关键词 | copper; nickel; transition element; angle resolved photoemission spectroscopy; Article; chemical modification; chemical parameters; chemical structure; chemical substitution; dirac node; electron; fermion |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/238426 |
作者单位 | Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay, 91405, France; Institut de Minéralogie de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS UMR 7590, Museum National d'Histoire Naturelle, Paris, 75252, France; Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, 34149, Italy; International School for Advanced Studies (SISSA), Trieste, 34136, Italy; Elettra Sincrotrone Trieste, Area Science Park, Trieste, 34149, Italy; Synchrotron SOLEIL, Gif-sur-Yvette, F-91192, France; Laboratoire des Solides Irradiés, CEA/DRF/lRAMIS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128, France; International Centre for Theoretical Physics, Trieste, 34151, Italy |
推荐引用方式 GB/T 7714 | Nilforoushan N.,Casula M.,Amaricci A.,et al. Moving Dirac nodes by chemical substitution[J],2021,118(33). |
APA | Nilforoushan N..,Casula M..,Amaricci A..,Caputo M..,Caillaux J..,...&Marsi M..(2021).Moving Dirac nodes by chemical substitution.Proceedings of the National Academy of Sciences of the United States of America,118(33). |
MLA | Nilforoushan N.,et al."Moving Dirac nodes by chemical substitution".Proceedings of the National Academy of Sciences of the United States of America 118.33(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。