DOI | 10.1073/pnas.2107205118
|
| High-performance AEM unitized regenerative fuel cell using Pt-pyrochlore as bifunctional oxygen electrocatalyst |
| Gayen P.; Saha S.; Liu X.; Sharma K.; Ramani V.K.
|
发表日期 | 2021
|
ISSN | 0027-8424
|
卷号 | 118期号:40 |
英文摘要 | The performance of fixed-gas unitized regenerative fuel cells (FG-URFCs) are limited by the bifunctional activity of the oxygen electrocatalyst. It is essential to have a good bifunctional oxygen electrocatalyst which can exhibit high activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In this regard, Pt-Pb2Ru2O7-x is synthesized by depositing Pt on Pb2Ru2O7-x wherein Pt individually exhibits high ORR while Pb2Ru2O7-x shows high OER and moderate ORR activity. Pt-Pb2Ru2O7-x exhibits higher OER (η@10mAcm-2 = 0.25 ± 0.01 V) and ORR (η@-3mAcm-2 = -0.31 ± 0.02 V) activity in comparison to benchmark OER (IrO2, η@10mAcm-2 = 0.35 ± 0.02 V) and ORR (Pt/C, η@-3mAcm-2 = -0.33 ± 0.02 V) electrocatalysts, respectively. Pt-Pb2Ru2O7-x shows a lower bifunctionality index (η@10mAcm-2, OER− η@-3mAcm-2, ORR) of 0.56 V with more symmetric OER–ORR activity profile than both Pt (>1.0 V) and Pb2Ru2O7-x (0.69 V) making it more useful for the AEM (anion exchange membrane) URFC or metal-air battery applications. FG-URFC tested with Pt-Pb2Ru2O7-x and Pt/C as bifunctional oxygen electrocatalyst and bifunctional hydrogen electrocatalyst, respectively, yields a mass-specific current density of 715 ± 11 A/gcat-1 at 1.8 V and 56 ± 2 A/gcat-1 at 0.9 V under electrolyzer mode and fuel-cell mode, respectively. The FG-URFC shows a round-trip efficiency of 75% at 0.1 A/cm−2, underlying improvement in AEM FG-URFC electrocatalyst design. © 2021 National Academy of Sciences. All rights reserved. |
英文关键词 | Bifunctionality index; Oxygen evolution reaction (OER); Oxygen reduction reaction (ORR); Pyrochlore; Unitized regenerative fuel cells |
语种 | 英语
|
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
(IF:9.58[JCR-2018],10.6[5-Year]) |
文献类型 | 期刊论文
|
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/238352
|
作者单位 | Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States; McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
|
推荐引用方式 GB/T 7714 |
Gayen P.,Saha S.,Liu X.,et al. High-performance AEM unitized regenerative fuel cell using Pt-pyrochlore as bifunctional oxygen electrocatalyst[J],2021,118(40).
|
APA |
Gayen P.,Saha S.,Liu X.,Sharma K.,&Ramani V.K..(2021).High-performance AEM unitized regenerative fuel cell using Pt-pyrochlore as bifunctional oxygen electrocatalyst.Proceedings of the National Academy of Sciences of the United States of America,118(40).
|
MLA |
Gayen P.,et al."High-performance AEM unitized regenerative fuel cell using Pt-pyrochlore as bifunctional oxygen electrocatalyst".Proceedings of the National Academy of Sciences of the United States of America 118.40(2021).
|