Climate Change Data Portal
DOI | 10.1016/j.atmosres.2021.105858 |
A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign | |
Dillon M.E.; Maldonado P.; Corrales P.; García Skabar Y.; Ruiz J.; Sacco M.; Cutraro F.; Mingari L.; Matsudo C.; Vidal L.; Rugna M.; Hobouchian M.P.; Salio P.; Nesbitt S.; Saulo C.; Kalnay E.; Miyoshi T. | |
发表日期 | 2021 |
ISSN | 0169-8095 |
卷号 | 264 |
英文摘要 | This paper describes the lessons learned from the implementation of a regional ensemble data assimilation and forecast system during the intensive observing period of the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign (central Argentina, November–December 2018). This system is based on the coupling of the Weather Research and Forecasting (WRF) model and the Local Ensemble Transform Kalman Filter (LETKF). It combines multiple data sources both global and locally available like high-resolution surface networks, AMDAR data from local aircraft flights, soundings, AIRS retrievals, high-resolution GOES-16 wind estimates, and local radar data. Hourly analyses with grid spacing of 10 km are generated along with warm-start 36-h ensemble-forecasts, which are initialized from the rapid refresh analyses every three hours. A preliminary evaluation shows that a forecast error reduction is achieved due to the assimilated observations. However, cold-start forecasts initialized from the Global Forecasting System Analysis slightly outperform the ones initialized from the regional assimilation system discussed in this paper. The system uses a multi-physics approach, focused on the use of different cumulus and planetary boundary layer schemes allowing us to conduct an evaluation of different model configurations over central Argentina. We found that the best combinations for forecasting surface variables differ from the best ones for forecasting precipitation, and that differences among the schemes tend to dominate the forecast ensemble spread for variables like precipitation. Lessons learned from this experimental system are part of the legacy of the RELAMPAGO field campaign for the development of advanced operational data assimilation systems in South America. © 2021 |
英文关键词 | Regional data assimilation; Regional ensemble forecasts; RELAMPAGO |
来源期刊 | Atmospheric Research |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/236551 |
作者单位 | CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina; Servicio Meteorológico Nacional de, Argentina; Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Centro de Investigaciones del Mar y la Atmósfera (CONICET-UBA), Argentina; Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI-3351 IFAECI/CNRS-CONICET-UBA), Argentina; Barcelona Supercomputing Center, Spain; Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, United States; Department of Atmospheric and Oceanic Sciences, University of Maryland, United States; RIKEN Center for Computational Science, Japan |
推荐引用方式 GB/T 7714 | Dillon M.E.,Maldonado P.,Corrales P.,et al. A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign[J],2021,264. |
APA | Dillon M.E..,Maldonado P..,Corrales P..,García Skabar Y..,Ruiz J..,...&Miyoshi T..(2021).A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign.Atmospheric Research,264. |
MLA | Dillon M.E.,et al."A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign".Atmospheric Research 264(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。