Climate Change Data Portal
DOI | https://doi.org/10.1594/PANGAEA.872142 |
Principal Component Analysis of TerraSAR-X backscatter and coherence stacks one year (2012-2013) in the Lena River Delta, links to GeoTIFFs | |
Antonova; Sofia; Kääb; Andreas; Heim; Birgit; Langer; Moritz; Boike; Julia | |
发布日期 | 2016-02-15 |
数据集类型 | dataset |
英文简介 | Principal Component Analysis (PCA) is a well-established technique in remote sensing for the visualization of multidimensional data. It reduces redundancy in multiband or multitemporal imagery, increases the signal-to-noise ratio and provides an opportunity to use multitemporal datasets for change detection. PCA transforms the axes of multidimensional data in such way that the new axes (the principal components) account for variances within the data, with the first PC accounting for the largest variance and the last PC accounting for the smallest variance. |
空间范围 | Median Latitude: 72.950000 * Median Longitude: 126.550000 * South-bound Latitude: 72.000000 * West-bound Longitude: 123.600000 * North-bound Latitude: 73.900000 * East-bound Longitude: 129.500000 |
语种 | 英语 |
国家 | 国际 |
学科大类 | 气候变化 |
学科子类 | 气候变化 |
文献类型 | 数据集 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/219104 |
推荐引用方式 GB/T 7714 | Antonova,Sofia,Kääb,et al. Principal Component Analysis of TerraSAR-X backscatter and coherence stacks one year (2012-2013) in the Lena River Delta, links to GeoTIFFs.2016-02-15.https://doi.org/10.1594/PANGAEA.872142. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Antonova]的文章 |
[Sofia]的文章 |
[Kääb]的文章 |
百度学术 |
百度学术中相似的文章 |
[Antonova]的文章 |
[Sofia]的文章 |
[Kääb]的文章 |
必应学术 |
必应学术中相似的文章 |
[Antonova]的文章 |
[Sofia]的文章 |
[Kääb]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。