Climate Change Data Portal
DOI | https://doi.org/10.1594/PANGAEA.890637 |
Seawater carbonate chemistry and Southern Ocean phytoplankton community characterization and iron uptake | |
Trimborn; Scarlett; Brenneis; Tina; Hoppe; Clara Jule Marie; Laglera; Luis M; Norman; Louiza; Santos-Echeandía; Juan; Völkner; Christian; Wolf-Gladrow; Dieter A; Hassler; Christel S | |
发布日期 | 2018-06-01 |
数据集类型 | dataset |
英文关键词 | Antarctic ; Antarctic ; Biomass/Abundance/Elemental composition ; Bottles or small containers/Aquaria ( 20 L) ; Community composition and diversity ; Entire community ; Laboratory experiment ; Micro-nutrients ; Open ocean ; Other metabolic rates ; Pelagos ; Primary production/Photosynthesis ; Temperate |
英文简介 | The rise in anthropogenic CO2 and the associated ocean acidification (OA) will change trace metal solubility and speciation, potentially altering Southern Ocean (SO) phytoplankton productivity and species composition. As iron (Fe) sources are important determinants of Fe bioavailability, we assessed the effect of Fe-laden dust versus inorganic Fe (FeCl3) enrichment under ambient and high pCO2 levels (390 and 900 μatm) in a naturally Fe-limited SO phytoplankton community. Despite similar Fe chemical speciation and net particulate organic carbon (POC) production rates, CO2-dependent species shifts were controlled by Fe sources. Final phytoplankton communities of both control and dust treatments were dominated by the same species, with an OA-dependent shift from the diatom Pseudo nitzschia prolongatoides towards the prymnesiophyte Phaeocystis antarctica. Addition of FeCl3 resulted in high abundances of Nitzschia lecointei and Chaetoceros neogracilis under ambient and high pCO2, respectively. These findings reveal that both the characterization of the phytoplankton community at the species level and the use of natural Fe sources are essential for a realistic projection of the biological carbon pump in the Fe-limited pelagic SO under OA. As dust deposition represents a more realistic scenario for the Fe-limited pelagic SO under OA, unaffected net POC production and dominance of P. antarctica can potentially weaken the export of carbon and silica in the future. |
空间范围 | Latitude: -53.013330 * Longitude: 10.025000 |
时间范围 | 2012-01-21T00:00:00 - 2012-01-21T00:00:00 |
语种 | 英语 |
国家 | 国际 |
学科大类 | 气候变化 |
学科子类 | 气候变化 |
文献类型 | 数据集 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/216158 |
推荐引用方式 GB/T 7714 | Trimborn,Scarlett,Brenneis,et al. Seawater carbonate chemistry and Southern Ocean phytoplankton community characterization and iron uptake.2018-06-01.https://doi.org/10.1594/PANGAEA.890637. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。