CCPortal
DOIhttps://doi.org/10.1594/PANGAEA.911692
Deep-sea sediments of the global ocean mapped with Random Forest machine learning algorithm
Diesing; Markus
发布日期2020-02-03
数据集类型dataset
英文关键词accuracy ; confidence ; Deep-sea ; lithology ; map ; seafloor ; sediment ; spatial prediction
英文简介The seafloor lithology of deep-sea sediments of the global ocean was spatially predicted. Seven lithology classes were predicted: Calcareous sediment, Clay, Diatom ooze, Lithogenous sediment, Mixed calcareous-siliceous ooze, Radiolarian ooze and Siliceous mud. The dataset contains probability surfaces of the seven seafloor lithologies, the probability of the most probable class (maximum probability) and the predicted seafloor lithology. The results are presented as geo-referenced floating-point TIFF-files with a spatial resolution of 10 km and Wagner IV equal-area projection as spatial reference.
语种英语
国家国际
学科大类气候变化
学科子类气候变化
文献类型数据集
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/215675
推荐引用方式
GB/T 7714
Diesing,Markus. Deep-sea sediments of the global ocean mapped with Random Forest machine learning algorithm.2020-02-03.https://doi.org/10.1594/PANGAEA.911692.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Diesing]的文章
[Markus]的文章
百度学术
百度学术中相似的文章
[Diesing]的文章
[Markus]的文章
必应学术
必应学术中相似的文章
[Diesing]的文章
[Markus]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。