CCPortal
Collaborative Research: NNA Track 1: Global impacts and social implications of changing thermokarst lake environments near Yukon River Watershed communities
项目编号2022577
Katey Walter
项目主持机构University of Alaska Fairbanks Campus
开始日期2020-09-15
结束日期08/31/2024
英文摘要Navigating the New Arctic (NNA) is one of NSF's 10 Big Ideas. NNA projects address convergence scientific challenges in the rapidly changing Arctic. The Arctic research is needed to inform the economy, security and resilience of the Nation, the larger region and the globe. NNA empowers new research partnerships from local to international scales, diversifies the next generation of Arctic researchers, enhances efforts in formal and informal education, and integrates the co-production of knowledge where appropriate. This award fulfills part of that aim by addressing interactions among social systems and the natural environment in the following NNA focus areas: Arctic Residents, Data and Observation, Forecasting, and Global Impact.

Observations and modeling suggest the globe is standing on the inflection point of abrupt permafrost change. Increased methane emissions from newly formed lakes in melting permafrost regions likely play a major role in global climate. Reduction in permafrost and associated landscape change increasingly place Arctic and global communities at risk. Hence, improved forecasts for planning are critically needed. This project brings Alaskan communities together with social and natural scientists to examine changes in permafrost thaw lake environments, including the effects on Yukon River watershed villages and global climate. The project goals were defined by the Yukon River Inter-Tribal Watershed Council (YRITWC) to focus on lake area change, drinking water quality, and frozen transport corridors—topics identified by local stakeholders as critically important. The study sites comprise six villages across the vast Yukon watershed varying in permafrost types, climates, ecosystems, communities, and cultures. Project scientists and interns and advisors from Yukon villages are measuring lake area change, water chemistry, extent of ground melt, and methane emissions. This project is a collaboration between Yukon River Watershed indigenous villages, the YRITWC, Northern Social-Environmental Research (NSER), the Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado Boulder (CU), Mechanical Engineering (CU), the Cooperative Institute for Research in Environmental Sciences (CIRES), and the University of Alaska Fairbanks.

In the research study region, methane ebullition from thermokarst lakes is an imminent source of major increases to the radiative effect but substantial uncertainty surrounds the timing and scale. Land and aerial observations of present-day methane emissions in permafrost-dominated regions of Alaska are highly divergent. To reconcile this uncertainty, two new technologies are being deployed to bridge missing measurement scales: 1) Dual frequency comb spectroscopy is being used in the Arctic for the first time, and 2) Fixed-wing unmanned aerial vehicles provide novel methane sensing. Additionally, Indigenous knowledge of landscape change is being utilized with frozen ground/lake ice phenology to inform and add context to collected measurements by employing qualitative research techniques, participatory mapping, and semi-directed interviews. Research results have direct local application through integration with the Indigenous Observation Network database that links Indigenous, State, and Federal entities. The capacity for co-produced, adaptive forecasts is being enhanced with a web-based, open-source modeling environment of permafrost dynamics, climate, and surface processes. Based on guidance from the YRITWC, a Landscape Evolution Model of lake area change is being developed for its community planning applications. Indigenous knowledge provides key inputs for the model based upon a new mismatch matrix approach where matches can validate outputs, and mismatches reveal potential opportunities to adjust parameters and optimize forecasts. This interdisciplinary approach converges natural and social science paradigms to produce environmental knowledge important for contributing to the understanding of both global dynamics and addressing local societal needs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$907,444.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/212726
推荐引用方式
GB/T 7714
Katey Walter.Collaborative Research: NNA Track 1: Global impacts and social implications of changing thermokarst lake environments near Yukon River Watershed communities.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Katey Walter]的文章
百度学术
百度学术中相似的文章
[Katey Walter]的文章
必应学术
必应学术中相似的文章
[Katey Walter]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。