CCPortal
LTER: Ecological Response and Resilience to “Press-Pulse” Disturbances and a Recent Decadal Reversal in Sea Ice Trends Along the West Antarctic Peninsula
项目编号2026045
Oscar Schofield
项目主持机构Rutgers University New Brunswick
开始日期2021-05-15
结束日期04/30/2023
英文摘要Part 1: Non-technical description
The goal of all LTER sites is to conduct policy-relevant ecosystem research for questions that require tens of years of data and cover large geographical areas. The Palmer Antarctica Long Term Ecological Research (PAL-LTER) site has been in operation since 1990 and has been studying how the marine ecosystem west of the Antarctica Peninsula (WAP) is responding to a climate that is changing as rapidly as any place on the Earth. The study is evaluating how warming conditions and decreased ice cover leading to extended periods of open water are affecting many aspects of ecosystem function. The team is using combined cutting-edge approaches including yearly ship-based research cruises, small-boat weekly sampling, autonomous vehicles, animal biologging, oceanographic floats and seafloor moorings, manipulative lab-based process studies and modeling to evaluate both seasonal and annual ecosystem responses. These combined approaches are allowing for the study the ecosystem changes at scales needed to assess both short-term and long-term drivers. The study region also includes submarine canyons that are special regions of enhanced biological activity within the WAP. This research program is paired with a comprehensive education and outreach program promoting the global significance of Antarctic science and research. In addition to training for graduate and undergraduate students, they are using newly-developed Polar Literacy Principles as a foundation in a virtual schoolyard program that shares polar instructional materials and provides learning opportunities for K-12 educators. The PAL-LTER team is also leveraging the development of Out of School Time materials for afterschool and summer camp programs, sharing Palmer LTER-specific teaching materials with University, Museum, and 4-H Special Interest Club partners.

Part 2: Technical description
Polar ecosystems are among the most rapidly changing on Earth. The Palmer LTER (PAL-LTER) program builds on three decades of coordinated research along the western side of the Antarctic Peninsula (WAP) to gain new mechanistic and predictive understanding of ecosystem changes in response to disturbances spanning long-term decadal (‘press’) drivers and changes due to higher-frequency (‘pulse’) drivers, such as large storms and extreme seasonal anomaly in sea ice cover. The influence of major natural climate modes that modulate variations in sea ice, weather, and oceanographic conditions to drive changes in ecosystem structure and function (e.g., El Niño Southern Oscillation and Southern Annular Mode) are being studied at multiple time scales –from diel, seasonal, interannual, to decadal intervals, and space scales–from hemispheric to global scale investigated by remote sensing, the regional scales. Specifically, the team is evaluating how variability of physical properties (such as vertical and alongshore connectivity processes) interact to modulate biogeochemical cycling and community ecology in the WAP region. The study is providing an evaluation of ecosystem resilience and ecological responses to long-term “press-pulse” drivers and a decadal-level reversal in sea ice coverage. This program is providing fundamental understanding of population and biogeochemical responses for a marine ecosystem experiencing profound change.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$1,187,128.00
项目类型Continuing Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/212693
推荐引用方式
GB/T 7714
Oscar Schofield.LTER: Ecological Response and Resilience to “Press-Pulse” Disturbances and a Recent Decadal Reversal in Sea Ice Trends Along the West Antarctic Peninsula.2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Oscar Schofield]的文章
百度学术
百度学术中相似的文章
[Oscar Schofield]的文章
必应学术
必应学术中相似的文章
[Oscar Schofield]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。